20.已知函數(shù)f(x)=(x+a)(x-b),若a,b∈{-2,-1,0,1,2},則f(x)為偶函數(shù)的概率為(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 由已知f(x)為偶函數(shù)時,a=b,a,b∈{-2,-1,0,1,2},先求出基本事件總數(shù),再求出滿足a=b的情況有幾種,由此能求出f(x)為偶函數(shù)的概率.

解答 解:∵函數(shù)f(x)=(x+a)(x-b)=x2+(a-b)x-ab,
∴f(x)為偶函數(shù)時,a=b,
∵a,b∈{-2,-1,0,1,2},
∴基本事件總數(shù)n=5×5=25,其中滿足a=b的情況有:m=5種,
∴f(x)為偶函數(shù)的概率為p=$\frac{m}{n}=\frac{5}{25}=\frac{1}{5}$.
故選:A.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等可能事件概率計算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知等差數(shù)列{an}滿足,若a22+a52=5.則S7的最大值是$\frac{35}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F1(-1,0),離心率為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程:
(Ⅱ)過橢圓焦點F的直線l交橢圓于A、B兩點.
(1)若F是右焦點,y軸上一點M(0,$\frac{1}{3}$)滿足|MN|=|MB|,求直線1斜率k的值;
(2)若F是左焦點,設(shè)過點F且不與坐標(biāo)軸垂直的直線1交橢圓于A,B兩點,線段AB的垂直平分線與x軸交于點G,求點G的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)y=x(x-2)的定義域為[a,b],值域為[-1,3],則點(a,b)對應(yīng)圖中的( 。
A.點H(1,3)和點F(-1,1)B.線段EF和線段GHC.線段EH和線段FGD.線段EF和線段EH

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知a>0,b>0,c>0.
(1)若a+b=2,求證:ab($\sqrt{a}$+$\sqrt$)≤2;
(2)若abc(a+b+c)=1,求(a+b)(b+c)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.雙曲線T:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為10,焦點到漸近線的距離為3,則它的實軸長等于8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)和拋物線C2:y2=2px(p>0)都經(jīng)過點M($\frac{2}{3}$,$\frac{2\sqrt{6}}{3}$),且橢圓C1的右焦點和拋物線C2的焦點F2相同.
(1)求C1,C2的方程;
(2)過F2作斜率為k的直線l和拋物線C2相交于A,B兩點,直線l和橢圓C1相交于C,D兩點,如圖,當(dāng)△CDF1的面積和△ABO的面積相等時,求斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}中a1=1,對?n∈N*,函數(shù)f(x)=x2-an+1cosx+2an+1在定義域內(nèi)有唯一的零點.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{{2}^{n}}{{a}_{n}{a}_{n+1}}$求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=x-$\frac{1}{x}$,若不等式t•f(2x)≥2x-1對x∈(0,1]恒成立,則t的取值范圍為[$\frac{2}{3}$,+∞).

查看答案和解析>>

同步練習(xí)冊答案