11.函數(shù)f(x)=$\left\{\begin{array}{l}{a^x},x<0\\(a-4)x+3a,x≥0\end{array}$滿足[f(x1)-f(x2)](x1-x2)<0對定義域中的任意兩個不相等的x1,x2都成立,則a的取值范圍是$(0,\frac{1}{3}]$.

分析 由題意可得函數(shù)f(x)在定義域內(nèi)單調(diào)遞減,故有 $\left\{\begin{array}{l}{0<a<1}\\{{a}^{0}≥0+3a}\\{a-4<0}\end{array}\right.$,由此求得a的范圍.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{a^x},x<0\\(a-4)x+3a,x≥0\end{array}$
滿足[f(x1)-f(x2)](x1-x2)<0對定義域中的任意兩個不相等的x1,x2都成立,
∴函數(shù)f(x)在定義域內(nèi)單調(diào)遞減,
∴$\left\{\begin{array}{l}{0<a<1}\\{{a}^{0}≥0+3a}\\{a-4<0}\end{array}\right.$,求得0<a≤$\frac{1}{3}$,
故答案為:$(0,\frac{1}{3}]$.

點評 本題主要考查函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.為備戰(zhàn)某次運(yùn)動會,某市體育局組建了一個由4個男運(yùn)動員和2個女運(yùn)動員組成的6人代表隊并進(jìn)行備戰(zhàn)訓(xùn)練.
(1)經(jīng)過備戰(zhàn)訓(xùn)練,從6人中隨機(jī)選出2人進(jìn)行成果檢驗,求選出的2人中至少有1個女運(yùn)動員的概率;
(2)檢驗結(jié)束后,甲、乙兩名運(yùn)動員的成績?nèi)缦拢?br />甲:70,68,74,71,72
乙:70,69,70,74,72
根據(jù)兩組數(shù)據(jù)完成圖示的莖葉圖,并通過計算說明哪位運(yùn)動員的成績更穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\frac{sinπx}{{({{x^2}+1})({{x^2}-2x+2})}}$.對于下列命題:
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)有最大值;
③函數(shù)f(x)的定義域是R,且其圖象有對稱軸;
④方程f(x)=0在區(qū)間[-100,100]上的根的個數(shù)是201個;
其中不正確的命題個數(shù)有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=ln(-x2+2x+8)的單調(diào)遞增區(qū)間是( 。
A.(-∞,1)B.(-2,1)C.(1,4)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若sin($\frac{π}{2}$+θ)=$\frac{3}{7}$,則cos2($\frac{π}{2}$-θ)=$\frac{40}{49}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知集合A=(-2,4),B=(-∞,a],若A∩B=∅,則實數(shù)a的取值范圍是a≤-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)等比數(shù)列{an}的前項n和Sn,a2=$\frac{1}{8}$,且S1+$\frac{1}{16}$,S2,S3成等差數(shù)列,數(shù)列{bn}滿足bn=2n.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)cn=anbn,求數(shù)列{cn}的前項n和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在區(qū)域$\left\{\begin{array}{l}x+y-2≤0\\ x-y+2≥0\\ y≥0\end{array}\right.$內(nèi)任取一點P,則點P落在單位圓x2+y2=2內(nèi)的概率為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=alnx-x2+1.
(Ⅰ)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若a<0,且對任意x1,x2∈(0,+∞),都有|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案