【題目】《周髀算經(jīng)》有這樣一個問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個節(jié)氣日影長減等寸,雨水、驚蟄、春分、清明日影之和為三丈二尺,前七個節(jié)氣日影之和為七丈三尺五寸,問立夏日影長為(

A.七尺五寸B.六尺五寸C.五尺五寸D.四尺五寸

【答案】D

【解析】

利用等差數(shù)列的通項公式以及求和公式列出方程組,求出首項和公差,由此可求得立夏日影長.

從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個節(jié)氣日影長減等寸,雨水、驚蟄、春分、清明日影之和為三丈二尺,前七個節(jié)氣日影之和為七丈三尺五寸,

設十二節(jié)氣第個節(jié)氣的日影長為,則數(shù)列為等差數(shù)列,設其公差為,前項和為,

,解得,

,因此,立夏日影長為四尺五寸.

故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】共享單車又稱為小黃車,近年來逐漸走進了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調查某地區(qū)居民對共享單車的使用情況,從該地區(qū)居民中按年齡用隨機抽樣的方式隨機抽取了人進行問卷調查,得到這人對共享單車的評價得分統(tǒng)計填入莖葉圖,如下所示(滿分分):

1)找出居民問卷得分的眾數(shù)和中位數(shù);

2)請計算這位居民問卷的平均得分;

3)若在成績?yōu)?/span>分的居民中隨機抽取人,求恰有人成績超過分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求曲線處的切線方程,并證明:.

2)當時,方程有兩個不同的實數(shù)根,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù)有下述四個結論:

是偶函數(shù);的最大值為;

個零點;在區(qū)間單調遞增.

其中所有正確結論的編號是(

A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,拋物線的焦點為,是拋物線的準線與軸的交點,直線經(jīng)過焦點且與拋物線相交于、兩點,直線、分別交軸于、兩點,記、的面積分別為、.

1)求證:;

2)若恒成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校擬從甲、乙兩名同學中選一人參加疫情知識問答競賽,于是抽取了甲、乙兩人最近同時參加校內(nèi)競賽的十次成績,將統(tǒng)計情況繪制成如圖所示的折線圖.根據(jù)該折線圖,下面結論正確的是(

A.甲、乙成績的中位數(shù)均為7

B.乙的成績的平均分為6.8

C.甲從第四次到第六次成績的下降速率要大于乙從第四次到第五次的下降速率

D.甲的成績的方差小于乙的成績的方差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面為直角梯形,分別為的中點.

1)求證:平面;

2)若截面與底面所成銳二面角為,求的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】n個不同的實數(shù)a1,a2,,an可得n!個不同的排列,每個排列為一行寫成一個n!行的數(shù)陣.對第iai1,ai2,,ain,記bi=ai1+2ai23ai3+…+(1)nnain,i=1,2,3…,n!.例如用1,2,3可得數(shù)陣如圖,對于此數(shù)陣中每一列各數(shù)之和都是12,所以bl+b2+…b6=12+2×123×12=24.那么,在用1,2,3,4,5形成的數(shù)陣中,b1+b2+…b120等于(

A.3600B.1800C.1080D.720

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于無窮數(shù)列的某一項,若存在,有成立,則稱具有性質.

1)設,若對任意的,都具有性質,求的最小值;

2)設等差數(shù)列的首項,公差為,前項和為,若對任意的數(shù)列中的項都具有性質,求實數(shù)的取值范圍;

3)設數(shù)列的首項,當時,存在滿足,且此數(shù)列中恰有一項不具有性質,求此數(shù)列的前項和的最大值和最小值以及取得最值時對應的的值.

查看答案和解析>>

同步練習冊答案