【題目】對(duì)于無窮數(shù)列的某一項(xiàng),若存在,有成立,則稱具有性質(zhì).
(1)設(shè),若對(duì)任意的,都具有性質(zhì),求的最小值;
(2)設(shè)等差數(shù)列的首項(xiàng),公差為,前項(xiàng)和為,若對(duì)任意的數(shù)列中的項(xiàng)都具有性質(zhì),求實(shí)數(shù)的取值范圍;
(3)設(shè)數(shù)列的首項(xiàng),當(dāng)時(shí),存在滿足,且此數(shù)列中恰有一項(xiàng)不具有性質(zhì),求此數(shù)列的前項(xiàng)和的最大值和最小值以及取得最值時(shí)對(duì)應(yīng)的的值.
【答案】(1);(2);(3)時(shí),最大值為;或時(shí),最小值為.
【解析】
(1)計(jì)算得出、、,求得每種情況下對(duì)應(yīng)的最小值,進(jìn)而可得出結(jié)果;
(2)求得,根據(jù)題意得出對(duì)任意的恒成立,可得出,由此可得出的取值范圍;
(3)根據(jù)題意得出,根據(jù)存在滿足,得出、、、依次為:、、、、,進(jìn)一步得知:欲使此數(shù)列的前項(xiàng)和最大,、、、依次為:、、、,欲使此數(shù)列的前項(xiàng)和最小,、、、依次為:、、、,分別計(jì)算出兩種情況下數(shù)列的前項(xiàng)和,根據(jù)表達(dá)式可求得前項(xiàng)和分別取最大值或最小值時(shí)對(duì)應(yīng)的值.
(1)經(jīng)計(jì)算知:,此時(shí);,此時(shí);
當(dāng)時(shí),,此時(shí).
綜上可知,,即對(duì)任意的,都具有性質(zhì)時(shí),的最小值為;
(2)由已知可得,,若對(duì)任意的,數(shù)列中的都具有性質(zhì),則對(duì)任意的恒成立,
即,整理得:.
因?yàn)?/span>,則,所以.
因此,實(shí)數(shù)的取值范圍是;
(3)對(duì)于,,
因?yàn)?/span>、、、都具有性質(zhì),所以,
而當(dāng)時(shí),存在滿足,
所以、、、依次為:、、、、,
由已知不具有性質(zhì),故的可能值為、、、,
又因?yàn)?/span>、、、都具有性質(zhì),所以,
欲使此數(shù)列的前項(xiàng)和最大,、、、依次為:、、、,
欲使此數(shù)列的前項(xiàng)和最小,、、、依次為:、、、,
下面分別計(jì)算前項(xiàng)和:,
當(dāng)時(shí),此數(shù)列的前項(xiàng)和最大,最大值為;
.
當(dāng)且僅當(dāng)時(shí),即時(shí)等號(hào)成立,但,
這時(shí)取或時(shí),此數(shù)列的前項(xiàng)和最小,最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》有這樣一個(gè)問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個(gè)節(jié)氣日影長(zhǎng)減等寸,雨水、驚蟄、春分、清明日影之和為三丈二尺,前七個(gè)節(jié)氣日影之和為七丈三尺五寸,問立夏日影長(zhǎng)為( )
A.七尺五寸B.六尺五寸C.五尺五寸D.四尺五寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱臺(tái)中,底面是菱形,底面,且60°,,是棱的中點(diǎn).
(1)求證:;
(2)求直線與平面所成線面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,、分別為橢圓長(zhǎng)軸的左、右端點(diǎn),為直線上異于點(diǎn)的任意一點(diǎn),連接交橢圓于點(diǎn).
(1)若,求直線的方程;
(2)是否存在軸上的定點(diǎn)使得以為直徑的圓恒過與的交點(diǎn)?如果存在,請(qǐng)求出定點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),點(diǎn)是圓:上任意一點(diǎn),線段的垂直平分線交于點(diǎn),點(diǎn)的軌跡記為曲線.
(1)求曲線的方程;
(2)過的直線交曲線于不同的,兩點(diǎn),交軸于點(diǎn),已知,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,平面底面,是等邊三角形,底面是菱形,且,為棱的中點(diǎn),為菱形的中心,下列結(jié)論正確的有( )
A.直線與平面平行B.直線與直線垂直
C.線段與線段長(zhǎng)度相等D.與所成角的余弦值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為,曲線C1和C2在第一象限交于點(diǎn)A.
(1)求點(diǎn)A的直角坐標(biāo);
(2)直線與曲線C1,C2在第一象限分別交于點(diǎn)B,C,若△ABC的面積為,求α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;
(2)若點(diǎn)是曲線上的動(dòng)點(diǎn),求到直線距離的最小值,并求出此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com