分析 由題意,可先求出f1(x),f2(x),f3(x)…,歸納出fn(x)的表達式,即可得出f2018(x)的表達式
解答 解:由題意f1(x)=$f(x)=\frac{x}{1+x},x≥0$,
f2(x)=f(f1(x))=$\frac{\frac{x}{1+x}}{1+\frac{x}{1+x}}$=$\frac{x}{1+2x}$,
…
fn(x)=f(fn-1(x))=$\frac{x}{1+nx}$,
∴f2018(x)=$\frac{x}{1+2018x}$,
故答案為:f2018(x)=$\frac{x}{1+2018x}$.
點評 本題考查邏輯推理中歸納推理,由特殊到一般進行歸納得出結(jié)論是此類推理方法的重要特征.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 12$\sqrt{3}$ | C. | 8$\sqrt{3}$ | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,1] | B. | [1,2] | C. | [-1,2] | D. | [1,+∞] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在△ABC中,a:b:c=sinA:sinB:sinC | |
B. | 在△ABC中,若sin2A=sin2B,則a=b | |
C. | 在△ABC中,若sinA>sinB,則A>B,若A>B,則sinA>sinB | |
D. | 在△ABC中,$\frac{a}{sinA}=\frac{b+c}{sinB+sinC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {α|α=k•360°+300°,k∈Z} | B. | {α|α=k•360°+60°,k∈Z} | ||
C. | {α|α=k•360°+30°,k∈Z} | D. | {α|α=k•360°-60°,k∈Z} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sin4x | B. | y=cos2x | C. | y=tan2x | D. | $y=sin(\frac{π}{2}-4x)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,6) | B. | (-1,5) | C. | (0,5) | D. | (3,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com