8.函數(shù)$f(x)=\frac{x^2}{{{x^2}+1}}$的定義域為{0,1},則值域為{0,$\frac{1}{2}$}.

分析 根據(jù)x的取值,求出對應(yīng)的f(0),f(1)的值即可.

解答 解:$f(x)=\frac{x^2}{{{x^2}+1}}$=1-$\frac{1}{{x}^{2}+1}$,
若f(x)的定義域為{0,1},
x=0時,f(0)=0,
x=1時,f(1)=$\frac{1}{2}$,
故函數(shù)的值域是{0,$\frac{1}{2}$},
故答案為:{0,$\frac{1}{2}$}.

點評 本題考查了求函數(shù)的值域問題,考查函數(shù)求值問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知復(fù)數(shù)$z=\frac{16i}{{\sqrt{7}+3i}}$,則下列說法錯誤的是( 。
A.復(fù)數(shù)z的實部為3B.復(fù)數(shù)z的虛部為$\sqrt{7}$
C.復(fù)數(shù)z的模為4D.復(fù)數(shù)z的共軛復(fù)數(shù)為$-3+\sqrt{7}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.來自某校一班和二班的共計9名學(xué)生志愿服務(wù)者被隨機平均分配到運送礦泉水、清掃衛(wèi)生、維持秩序這三個崗位服務(wù),且運送礦泉水崗位至少有一名一班志愿者的概率是$\frac{20}{21}$.
(Ⅰ)求清掃衛(wèi)生崗位恰好一班1人、二班2人的概率;
(Ⅱ)設(shè)隨機變量X為在維持秩序崗位服務(wù)的一班的志愿者的人數(shù),求X分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.直線ax+by+c=0與圓x2+y2=16相交于兩點M、N.若c2=a2+b2,則$\overrightarrow{OM}•\overrightarrow{ON}$(O為坐標(biāo)原點)等于-14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C的一個焦點F1($\sqrt{3}$,0),短軸的長為2,雙曲線D以橢圓C的焦點為焦點,實軸長與橢圓C的短軸長相等.
(1)求橢圓C的方程;
(2)求雙曲線D的方程;
(3)求橢圓C與雙曲線D相交所得的矩形面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知(1+2x)n的展開式中各項的二項式系數(shù)和為an,第二項的系數(shù)為bn
(1)求an,bn;
(2)求數(shù)列{anbn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若函數(shù)f(x)=x2-2mx+2m+1,當(dāng)x∈[0,1]時,f(x)>0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{a+lnx}{x}$在點(e,f(e))處切線與直線e2x-y+e=0垂直.(注:e為自然對數(shù)的底數(shù))
(1)求a的值;
(2)若函數(shù)f(x)在區(qū)間(m,m+1)上存在極值,求實數(shù)m的取值范圍;
(3)求證:當(dāng)x>1時,f(x)>$\frac{2}{x+1}$恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$f(x)=\frac{x}{1+x},x≥0$,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,歸納猜想f2018(x)的表達式為f2018(x)=$\frac{x}{1+2018x}$.

查看答案和解析>>

同步練習(xí)冊答案