現(xiàn)有一個(gè)關(guān)于平面圖形的命題:如圖,同一個(gè)平面內(nèi)有兩個(gè)邊長(zhǎng)都是a的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為
a2
4
.類(lèi)比到空間,有兩個(gè)棱長(zhǎng)均為a的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為(  )
分析:首先平面正方形的知識(shí)可知一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為
a2
4
,結(jié)合空間正方體的結(jié)構(gòu)特征,即可類(lèi)比推理出兩個(gè)兩個(gè)正方體重疊部分的體積.
解答:解:∵同一個(gè)平面內(nèi)有兩個(gè)邊長(zhǎng)都是a的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,
則這兩個(gè)正方形重疊部分的面積恒為
a2
4
,
類(lèi)比到空間有兩個(gè)棱長(zhǎng)均為a的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,
則這兩個(gè)正方體重疊部分的體積恒為
a3
8

故選C
點(diǎn)評(píng):本題考查類(lèi)比推理,解答本題的關(guān)鍵是根據(jù)平面中正方形的性質(zhì)類(lèi)比推理出空間正方體的性質(zhì)特征,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)現(xiàn)有一個(gè)關(guān)于平面圖形的命題:如圖,同一個(gè)平面內(nèi)有兩個(gè)邊長(zhǎng)都是a的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為
a24
.類(lèi)比到空間,有兩個(gè)棱長(zhǎng)均為a的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆河南省鄭州市高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

現(xiàn)有一個(gè)關(guān)于平面圖形的命題:如圖所示,同一個(gè)平面內(nèi)有兩個(gè)變長(zhǎng)都是a的正方形,其中一個(gè)正方形的某起點(diǎn)在另一個(gè)正方形的中心,則這兩個(gè)正方形重疊部分的面積恒為,類(lèi)比到空間,有兩個(gè)棱長(zhǎng)為a的正方體,其中某一個(gè)正方體的某頂點(diǎn)在另一個(gè)正方體的中心,則這兩個(gè)正方體的重疊部分的體積恒為___

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省高二下學(xué)期期中數(shù)學(xué)理試卷(解析版) 題型:填空題

現(xiàn)有一個(gè)關(guān)于平面圖形的命題:如圖所示,同一個(gè)平面內(nèi)有兩個(gè)邊長(zhǎng)都是的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為,類(lèi)比到空間,有兩個(gè)棱長(zhǎng)均為的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為_(kāi)_______.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省第二學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:填空題

現(xiàn)有一個(gè)關(guān)于平面圖形的命題:如圖,同一個(gè)平面內(nèi)有兩個(gè)邊長(zhǎng)都是a的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形生重疊部分的面積恒為,類(lèi)比到空間,有兩個(gè)棱長(zhǎng)均為a的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為          ;

 

查看答案和解析>>

同步練習(xí)冊(cè)答案