【題目】已知 =2(cosωx,cosωx), =(cosωx, sinωx)(其中0<ω<1),函數(shù)f(x)= ,
(1)若直線x= 是函數(shù)f(x)圖象的一條對稱軸,先列表再作出函數(shù)f(x)在區(qū)間[﹣π,π]上的圖象.
(2)求函數(shù)y=f(x),x∈[﹣π,π]的值域.

【答案】
(1)解:函數(shù)f(x)= =2cos2ωx+2 sinωxcosωx=cos2ωx+ sin2ωx+1=2sin(2ωx+ )+1,

若直線x= 是函數(shù)f(x)圖象的一條對稱軸,則2ω + =kπ+ ,k∈Z,

即ω= + ,k∈Z,

結(jié)合0<ω<1,可得ω= ,故f(x)=2sin(x+ )+1.

列表:

x+

0

π

x

﹣π

π

y

0

﹣1

1

3

1

0

函數(shù)f(x)在[﹣π,π]的圖象如圖所示:


(2)解:根據(jù)x∈[﹣π,π],可得x+ ∈[﹣ , ],sin(x+ )∈[﹣1,1],故函數(shù)f(x)的值域為[﹣1,3].


【解析】(1)利用兩個向量的數(shù)量積公式,三角恒等變換化簡函數(shù)的解析式,再用用五點法作函數(shù)y=f(x)在區(qū)間[﹣π,π]上的圖象.(2)由題意利用正弦函數(shù)的定義域和值域,求得函數(shù)y=f(x),x∈[﹣π,π]的值域.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知三條直線l1:ax﹣y+a=0,l2:x+ay﹣a(a+1)=0,l3:(a+1)x﹣y+a+1=0,a>0.
(1)證明:這三條直線共有三個不同的交點;
(2)求這三條直線圍成的三角形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列{an}的前n項和為Sn , 且 = ,a1=m,現(xiàn)有如下說法: ①a2=5;
②當n為奇數(shù)時,an=3n+m﹣3;
③a2+a4+…+a2n=3n2+2n.
則上述說法正確的個數(shù)為(
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD和ADPQ均為正方形,他們所在的平面互相垂直,動點M在線段PQ上,E、F分別為AB、BC的中點,設異面直線EM與AF所成的角為θ,則cosθ的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD= ,PA=AD=2,AB=BC=1.
(1)求平面PAB與平面PCD所成二面角的余弦值;
(2)點Q是線段BP上的動點,當直線CQ與DP所成的角最小時,求線段BQ的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的各項均為正數(shù),Sn表示數(shù)列{an}的前n項的和,且
(1)求數(shù)列{an}的通項公式;
(2)設 ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A,B兩名同學在5次數(shù)學考試中的成績統(tǒng)計如下面的莖葉圖所示,若A,B兩人的平均成績分別是xA , xB , 觀察莖葉圖,下列結(jié)論正確的是(
A.xA<xB , B比A成績穩(wěn)定
B.xA>xB , B比A成績穩(wěn)定
C.xA<xB , A比B成績穩(wěn)定
D.xA>xB , A比B成績穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=f(x)是定義域為R的奇函數(shù),當x≥0時,f(x)=x2﹣2x,函數(shù)f(x)與函數(shù)y=1的交點個數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設利用的舊墻的長度為x(單位:m),修建此矩形場地圍墻的總費用為y(單位:元). (Ⅰ)將y表示為x的函數(shù):
(Ⅱ)試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用.

查看答案和解析>>

同步練習冊答案