【題目】已知數(shù)列滿足: ,且.

1)求證:數(shù)列是等比數(shù)列;

2)設是數(shù)列的前項和,若對任意都成立.試求的取值范圍.

【答案】(Ⅰ)見解析;(Ⅱ)

【解析】

試題

(1)利用題中的遞推關系計算可得后項與前項的比值為定值,計算首項為即可證得數(shù)列為等比數(shù)列;

(2)原問題轉(zhuǎn)化為對任意的都成立,分類討論可得:實數(shù)的取值范圍是

試題解析:

(Ⅰ)因為,

所以,

所以,

,

所以數(shù)列是首項為,公比為的等比數(shù)列.

(Ⅱ)由(Ⅰ)得,,即,

要使對任意的都成立,

(*)對任意的都成立. 

①當為正奇數(shù)時,由(*)得,,

因為

所以對任意的正奇數(shù)都成立,

當且僅當時,有最小值1,

所以

②當為正偶數(shù)時,由(*)得,

,

因為,

所以對任意的正偶數(shù)都成立.

當且僅當時,有最小值,所以

綜上所述,存在實數(shù),使得對任意的都成立,

故實數(shù)的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】環(huán)保組織隨機抽檢市內(nèi)某河流2015年內(nèi)100天的水質(zhì),檢測單位體積河水中重金屬含量,并根據(jù)抽檢數(shù)據(jù)繪制了如下圖所示的頻率分布直方圖.

(Ⅰ)求圖中的值;

(Ⅱ)假設某企業(yè)每天由重金屬污染造成的經(jīng)濟損失(單位:元)與單位體積河水中重金屬含量

的關系式為,若將頻率視為概率,在本年內(nèi)隨機抽取一天,試估計這天經(jīng)濟損失不超過500元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構(gòu)用簡單隨機抽樣方法從不同地區(qū)調(diào)查了位育齡婦女,結(jié)果如表.

非一線

一線

總計

愿生

不愿生

總計

附表:

算得,參照附表,得到的正確結(jié)論是( )

A. 在犯錯誤的概率不超過的前提下,認為“生育意愿與城市級別有關”

B. 以上的把握認為“生育意愿與城市級別有關”

C. 在犯錯誤的概率不超過的前提下,認為“生育意愿與城市級別無關”

D. 以上的把握認為“生育意愿與城市級別無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線過點,其參數(shù)方程為為參數(shù),),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)寫出曲線的普通方程和曲線的直角坐標方程;

(2)已知曲線和曲線交于,兩點(之間),且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線

1)若直線不經(jīng)過第四象限,求的取值范圍;

2)若直線軸負半軸于點,交軸正半軸于點,為坐標原點,設的面積為,求的最小值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關于公差d>0的等差數(shù)列{an}的四個命題:
p1:數(shù)列{an}是遞增數(shù)列;
p2:數(shù)列{nan}是遞增數(shù)列;
p3:數(shù)列 是遞增數(shù)列;
p4:數(shù)列{an+3nd}是遞增數(shù)列;
其中真命題是(
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了在夏季降溫和冬季取暖時減少能源消耗,業(yè)主決定對房屋的屋頂和外墻噴涂某種新型隔熱材料,該材料有效使用年限為20年.已知房屋外表噴一層這種隔熱材料的費用為每毫米厚6萬元,且每年的能源消耗費用(萬元)與隔熱層厚度(毫米)滿足關系:.設為隔熱層建造費用與年的能源消耗費用之和.

(1)請解釋的實際意義,并求的表達式;

(2)當隔熱層噴涂厚度為多少毫米時,業(yè)主所付的總費用最少?并求此時與不建隔熱層相比較,業(yè)主可節(jié)省多少錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1:x-2y+3=0與直線l2:2x+3y-8=0的交點為M,

(1)求過點M且到點P(0,4)的距離為2的直線l的方程;

(2)求過點M且與直線l3:x+3y+1=0平行的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C1的方程為x2+(y+1)2=4,圓C2的圓心坐標為(2,1).

(1)若圓C1與圓C2相交于A,B兩點,且|AB|=,求點C1到直線AB的距離;

(2)若圓C1與圓C2相內(nèi)切,求圓C2的方程.

查看答案和解析>>

同步練習冊答案