分析 (1)令x=0,可得a0.
(2)令x=$\frac{1}{2}$,可得1+$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$=$(\frac{7}{4})^{n}$,即可得出.
(3)由${({1+x+{x^2}})^n}={a_0}+{a_1}x+{a_1}{x^2}+…+{a_{2n}}{x^{2n}}$.令x=1,可得:a0+a1+a2+…+a2n=3n,令x=-1,可得a0-a1+a2-…+a2n=1.相加即可得出.
解答 解:(1)令x=0,可得a0=1.
(2)令x=$\frac{1}{2}$,可得1+$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$=($\frac{7}{4}$)n;
∴$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$=$(\frac{7}{4})^{n}$-1.
(3)由${({1+x+{x^2}})^n}={a_0}+{a_1}x+{a_1}{x^2}+…+{a_{2n}}{x^{2n}}$.
令x=1,可得:a0+a1+a2+…+a2n=3n,
令x=-1,可得a0-a1+a2-…+a2n=1.
相加可得:a0+a2+a4+…+a2n=$\frac{1}{2}$[3n+1].
∴a2+a4+…+a2n=$\frac{1}{2}$[3n+1]-1=$\frac{{3}^{n}-1}{2}$.
點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用、方程思想方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 恰有一個(gè)零點(diǎn) | B. | 恰有兩個(gè)零點(diǎn) | C. | 恰有三個(gè)零點(diǎn) | D. | 至多兩個(gè)零點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,e-2) | B. | (e-2,+∞) | C. | (0,e2) | D. | (e2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com