13.若函數(shù)$f(x)=\frac{4x}{x+4}{,_{\;}}且{x_1}=1,{x_{n+1}}=f({x_n})$,則x2017=$\frac{1}{505}$.

分析 根據(jù)數(shù)列的遞推關(guān)系,構(gòu)造數(shù)列{$\frac{1}{{x}_{n}}$},得到數(shù)列{$\frac{1}{{x}_{n}}$}是等差數(shù)列,結(jié)合等差數(shù)列的通項(xiàng)公式進(jìn)行求解即可.

解答 解:∵$f(x)=\frac{4x}{x+4}{,_{\;}}且{x_1}=1,{x_{n+1}}=f({x_n})$,
∴xn+1=$\frac{4{x}_{n}}{{x}_{n}+4}$,
則$\frac{1}{{x}_{n+1}}$=$\frac{{x}_{n}+4}{4{x}_{n}}$=$\frac{1}{{x}_{n}}$+$\frac{1}{4}$,
即$\frac{1}{{x}_{n+1}}$-$\frac{1}{{x}_{n}}$=$\frac{1}{4}$,
則數(shù)列{$\frac{1}{{x}_{n}}$}是公差d=$\frac{1}{4}$的等差數(shù)列,首項(xiàng)為1,
則$\frac{1}{{x}_{n}}$=1+$\frac{1}{4}$(n-1),
則$\frac{1}{{x}_{2017}}$=1+$\frac{1}{4}×2016$=1+504=505,
則x2017=$\frac{1}{505}$,
故答案為:$\frac{1}{505}$

點(diǎn)評(píng) 本題主要考查遞推數(shù)列的應(yīng)用,根據(jù)條件構(gòu)造等差數(shù)列是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠BAC=90°.點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C-EM-N的正弦值;
(Ⅲ)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為$\frac{\sqrt{7}}{21}$,求線段AH的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)證明:如果a>0,b>0,那么$\frac{a}{{\sqrt}}+\frac{{\sqrt{a}}}≥\sqrt{a}+\sqrt$;
(2)已知2x+3y+4z=10,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知O是三角形ABC所在平面內(nèi)一定點(diǎn),動(dòng)點(diǎn)P滿足$\overrightarrow{AP}=λ(\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}+\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}})λ∈{R^+}$,則P點(diǎn)軌跡一定通過三角形ABC的( 。
A.內(nèi)心B.外心C.垂心D.重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若對(duì)任意的x∈[a,b],都有|f(x)-g(x)|≤k(k≥0),則稱f(x)與g(x)在[a,b]上是“k度和諧函數(shù)”,[a,b]稱為“k度密切區(qū)間”.設(shè)函數(shù)f(x)=lnx與$g(x)=\frac{mx-1}{x}$在[$\frac{1}{e}$,e]上是“e度和諧函數(shù)”,則m的取值范圍是-1≤m≤1+e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)曲線f(x)=$\sqrt{{m^2}+1}cosx$(m∈R)上任一點(diǎn)(x,y)處切線斜率為g(x),則函數(shù)y=x2g(x)的部分圖象可以為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)${({1+x+{x^2}})^n}={a_0}+{a_1}x+{a_1}{x^2}+…+{a_{2n}}{x^{2n}}$.
(1)求a0的值;
(2)求$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$的值;
(3)求a2+a4+…+a2n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x2+2ax+2lnx(a∈R),g(x)=2ex+3x2(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)f(x)的極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若函數(shù)y=f(x)的圖象與函數(shù)y=g(x)的圖象有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中點(diǎn).
(I)求證:EM⊥AD;
(II)求二面角A-BE-C的余弦值;
(III)在線段EC上是否存在點(diǎn)P,使得直線AP與平面ABE所成的角為45°,若存在,求出$\frac{EP}{EC}$的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案