【題目】如果三個(gè)常用對(duì)數(shù),任意兩個(gè)的對(duì)數(shù)尾數(shù)之和大于第三個(gè)對(duì)數(shù)尾數(shù),則稱這三個(gè)正數(shù)可以構(gòu)成一個(gè)“對(duì)數(shù)三角形”.現(xiàn)從集合 M={7,8,9,10,11,12,13,14} 中選擇三個(gè)互異整數(shù)作成對(duì)數(shù)三角形,則不同的選擇方案有( ).

A. B.

C. D.

【答案】A

【解析】

顯然,的尾數(shù)為0,只須考慮中各數(shù)的對(duì)數(shù)能夠組成三角形的三元組情況.將劃分成兩個(gè)子集:.

注意到,若,則能構(gòu)成對(duì)數(shù)三角形,當(dāng)且僅當(dāng),即.

于是,A中三數(shù)能組成對(duì)數(shù)三角形(7,8,9); B中能組成對(duì)數(shù)三角形的有(1.1,1.2,1.3);(1.1,1.3,1.4); (1.2,1.3,1.4).

A中取一數(shù),B中取兩數(shù)不能組成對(duì)數(shù)三角形;

A中取兩數(shù),B中取一數(shù)組成對(duì)數(shù)三角形的情況有: (1.2,7,8),(1.2,8,9),(1.3,7,8),(1.3,7,9),(1.3,8,9),(1.4,7,8),(1.4,7,9),(1.4,8,9). 共計(jì)12,即等于.

故答案為:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為的正方形和高為的等腰梯形所在的平面互相垂直,,交于點(diǎn),點(diǎn)為線段上任意一點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求與平面所成角的正弦值;

(Ⅲ)是否存在點(diǎn)使平面與平面垂直,若存在,求出的值,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說(shuō)明理由;

(2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過(guò)和不超過(guò)的工人數(shù)填入下面的列聯(lián)表:

超過(guò)

不超過(guò)

第一種生產(chǎn)方式

第二種生產(chǎn)方式

(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某年級(jí)組織學(xué)生參加了某項(xiàng)學(xué)術(shù)能力測(cè)試,為了解參加測(cè)試學(xué)生的成績(jī)情況,從中隨機(jī)抽取20名學(xué)生的測(cè)試成績(jī)作為樣本,規(guī)定成績(jī)大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀.統(tǒng)計(jì)結(jié)果如圖:

(1)求的值和樣本的平均數(shù);

(2)從該樣本成績(jī)優(yōu)秀的學(xué)生中任選兩名,求這兩名學(xué)生的成績(jī)至少有一個(gè)落在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),,其中的導(dǎo)函數(shù).

1)令,,,猜想的表達(dá)式,并給出證明;

2)若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( ).

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的20%

C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多

D. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,過(guò)的直線與橢圓交于兩點(diǎn),已知點(diǎn)的坐標(biāo)為.

(Ⅰ)當(dāng)軸垂直時(shí),求點(diǎn)A、B的坐標(biāo)及的值

(Ⅱ)設(shè)為坐標(biāo)原點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出.具體操作是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過(guò)程逐次得到各個(gè)圖形,如圖.

現(xiàn)在上述圖(3)中隨機(jī)選取一個(gè)點(diǎn),則此點(diǎn)取自陰影部分的概率為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩名老師和五名學(xué)生站一排拍照.

1)五名學(xué)生必須排在一起共有多少種排法?

2)兩名老師不能相鄰共有多少種排法?

3)兩名老師不能排在兩邊共有多少種排法?

查看答案和解析>>

同步練習(xí)冊(cè)答案