解不等式:x2-x+4>0.
考點:一元二次不等式的解法
專題:不等式的解法及應用
分析:由于x2-x+4=(x-
1
2
)2
+
15
4
>0,即可得出x2-x+4>0的解集.
解答: 解:∵x2-x+4=(x-
1
2
)2
+
15
4
>0,
∴x2-x+4>0的解集是R.
點評:本題考查了一元二次不等式的解法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若對所有的實數(shù)x及1≤t≤
2
均有(x+t2+2)2+(x+at)2
1
8
成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且滿足Sn=2an-2.
(1)求數(shù)列{an}的通項公式;
(2)設bn=log2an,求數(shù)列{an•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD為矩形,PD=AD=
1
2
AB=a,點E、F分別為PA、PC的中點.
(Ⅰ)求證:EF∥平面ABCD; 
(Ⅱ)求四棱錐P-ABCD的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的內角A,B,C所對的邊長分別為a,b,c,且acosB=3,bsinA=4.
(1)求邊長a;
(2)若△ABC的面積S=10,求△ABC的周長l.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={1,3,x3+3x2+2x},A={1,|2x-1|},是否存在實數(shù)x,使得∁UA={0}?若存在,求x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x2-3x+1,g(x)=Asin(x-
π
6
)(A≠0).
(1)當0≤x≤
π
2
時,求y=f(sinx)的最大值;
(2)問a取何值時,方程f(sinx)=a-sinx在[0,2π)上有兩解?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓C:x2+y2=4被直線l:x-y+1=0所截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)滿足:2f(x)-f(
1
x
)=
3
x2
,則函數(shù)f(x)的表達式為
 

查看答案和解析>>

同步練習冊答案