分析 (Ⅰ)依題意可求得q=$\frac{1}{2}$,而a1=1,從而可求數(shù)列{an}的通項公式;
(2)利用“錯位相減法”即可得出數(shù)列{nan}的前n項和為Tn,再利用放縮法即可證明.
解答 解:( I)設數(shù)列 {an}的公比為q,由2(S4+a4)=S2+a2+S3+a3,
得(S4-S2)+(S4-S3)+2a4=a2+a3,即4a4=a2,
∴q2=$\frac{1}{4}$,
∵{an}是單調(diào)遞減數(shù)列,
∴q=$\frac{1}{2}$,
∴an=($\frac{1}{2}$)n.
(2)由(1)知$n{a_n}=\frac{n}{2^n}$,
∴${T_n}=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+…+\frac{n-1}{{{2^{n-1}}}}+\frac{n}{2^n}$,
①$2{T_n}=1+\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+…+\frac{n-1}{{{2^{n-2}}}}+\frac{n}{{{2^{n-1}}}}$,②
②-①得:${T_n}=1+\frac{1}{2}+\frac{1}{2^2}+…+\frac{1}{{{2^{n-1}}}}-\frac{n}{2^n}$,${T_n}=\frac{{1-{{(\frac{1}{2})}^n}}}{{1-\frac{1}{2}}}-\frac{n}{2^n}=2-\frac{n+2}{2^n}$,
由${T_{n+1}}-{T_n}=(n+1){a_{n+1}}=\frac{n+1}{{{2^{n+1}}}}>0$,得T1<T2<T3<…<Tn,
故${T_n}≥{T_1}=\frac{1}{2}$,
又${T_n}=2-\frac{n+2}{2^n}<2$,
因此對于任意正整數(shù)n,$\frac{1}{2}≤{T_n}<2$
點評 本題考查數(shù)列的求和,著重考查等差數(shù)列的關系的確定及其通項公式的應用,突出考查方程思想與錯位相減法求和以及放縮法,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{9}{10}$ | B. | $\frac{9}{20}$ | C. | $\frac{20}{21}$ | D. | $\frac{10}{21}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ${log_2}\frac{1}{5}\;<{2^{0.1}}\;<{2^{-1}}$ | B. | ${2^{0.1}}\;<{2^{-1}}<{log_2}\frac{1}{5}$ | ||
C. | ${log_2}\frac{1}{5}\;<{2^{-1}}<{2^{0.1}}$ | D. | ${2^{0.1}}\;<{log_2}\frac{1}{5}<{2^{-1}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{5}{3}$ | C. | $\frac{9}{5}$ | D. | $\frac{31}{17}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\sqrt{3}$ | B. | -1 | C. | $\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com