精英家教網 > 高中數學 > 題目詳情

【題目】甲、乙兩個盒子中裝有相同大小的紅球和白球若干,從甲盒中取出一個紅球的概率為P,從乙盒中取出一個球為紅球的概率為,而甲盒中球的總數是乙盒中的總數的2倍。若將兩盒中的球混合后,取出一個球為紅球的概率為,則P的值為(

A. B. C. D.

【答案】C

【解析】分析:根據題意,甲乙中共有紅球 (m+2m)=m,據此即可求出甲中紅球個數,該個數占甲中球的總數的比例即為所求.

詳解假設甲中有2m個球.

∵甲盒中球的總數是乙盒中球的總數的2倍,

∴乙中有m個球,混合后共有3m個球.

∵從乙盒中摸到紅球的概率為,

∴乙盒中共有紅球m.

∵將甲、乙兩個盒子中的球裝在一起后,摸到紅球的概率為

∴甲、乙中共有紅球 (m+2m)=m,

∴甲盒中紅球的個數為m-m=m

∴所求概率為p= =.

故選C.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】高斯是德國著名的數學家,近代數學奠基者之一,享有“數學王子”的稱號,他和阿基米德、牛頓并列為世界三大數學家,用其名字命名的“高斯函數”為:設xR,用[x]表示不超過x的最大整數,則y=[x]稱為高斯函數,例如:[-3.5]=-4,[2.1]=2,已知函數,則關于函數gx)=[fx)]的敘述正確的是( 。

A. 是偶函數B. 是奇函數

C. 的值域是0,D. 的值域是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200.在機器使用期間,如果備件不足再購買,則每個500.現需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數,得下面柱狀圖:

以這100臺機器更換的易損零件數的頻率代替1臺機器更換的易損零件數發(fā)生的概率,記表示2臺機器三年內共需更換的易損零件數,表示購買2臺機器的同時購買的易損零件數.

)求的分布列;

)若要求,確定的最小值;

)以購買易損零件所需費用的期望值為決策依據,在之中選其一,應選用哪個?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在公園游園活動中有這樣一個游戲項目:甲箱子里裝有3個白球和2個黑球,乙箱子里裝有1個白球和2個黑球,這些球除顏色外完全相同;每次游戲都從這兩個箱子里各隨機地摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結束后將球放回原箱)
(1)在一次游戲中:①求摸出3個白球的概率;②求獲獎的概率;
(2)在兩次游戲中,記獲獎次數為X:①求X的分布列;②求X的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程是為參數),以為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為,且直線與曲線交于兩點.

(Ⅰ)求直線的普通方程及曲線的直角坐標方程;

(Ⅱ)把直線軸的交點記為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,點,直線l,設圓C的半徑為1,圓心C在直線l上.

過點A作圓C的切線APP為切點,當切線AP最短時,求圓C的標準方程;

若圓C上存在點M,使,求圓心C的橫坐標a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點M、N兩點.
(1)求k的取值范圍;
(2)若 =12,其中O為坐標原點,求|MN|.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若四面體的三組對棱分別相等,即,,,則________.(寫出所有正確結論的編號)

①四面體每個面的面積相等

②四面體每組對棱相互垂直

③連接四面體每組對棱中點的線段相互垂直平分

④從四面體每個頂點出發(fā)的三條棱的長都可以作為一個三角形的三邊長

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場銷售某種品牌的空調器,每周周初購進一定數量的空調器,商場每銷售一臺空調器可獲利500元,若供大于求,則每臺多余的空調器需交保管費100元;若供不應求,則可從其他商店調劑供應,此時每臺空調器僅獲利潤200元. (Ⅰ)若該商場周初購進20臺空調器,求當周的利潤(單位:元)關于當周需求量n(單位:臺,n∈N)的函數解析式f(n);
(Ⅱ)該商場記錄了去年夏天(共10周)空調器需求量n(單位:臺),整理得表:

周需求量n

18

19

20

21

22

頻數

1

2

3

3

1

以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場周初購進20臺空調器,X表示當周的利潤(單位:元),求X的分布列及數學期望.

查看答案和解析>>

同步練習冊答案