8.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若$20a•\overrightarrow{BC}+15b•\overrightarrow{CA}+12c•\overrightarrow{AB}=\vec 0$,則△ABC的最小角等于$arccos\frac{4}{5}$.

分析 $20a•\overrightarrow{BC}+15b•\overrightarrow{CA}+12c•\overrightarrow{AB}=\vec 0$,化為(20a-15b)$\overrightarrow{AC}$+(12c-20a)$\overrightarrow{AB}$=$\overrightarrow{0}$,根據(jù)$\overrightarrow{AC}$,$\overrightarrow{AB}$不共線,可得20a-15b=12c-20a=0,再利用余弦定理即可得出.

解答 解:∵$20a•\overrightarrow{BC}+15b•\overrightarrow{CA}+12c•\overrightarrow{AB}=\vec 0$,
∴20a$(\overrightarrow{AC}-\overrightarrow{AB})$+15b$\overrightarrow{CA}$+12c$\overrightarrow{AB}$=0,
化為(20a-15b)$\overrightarrow{AC}$+(12c-20a)$\overrightarrow{AB}$=$\overrightarrow{0}$,
∵$\overrightarrow{AC}$,$\overrightarrow{AB}$不共線,
∴20a-15b=12c-20a=0,
化為b=$\frac{4}{3}$a,c=$\frac{5}{3}$a.
∴邊a最小,因此角A最小,
由余弦定理可得:cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\frac{16}{9}{a}^{2}+\frac{25}{9}{a}^{2}-{a}^{2}}{2×\frac{4}{3}a×\frac{5}{3}a}$=$\frac{4}{5}$.
∴A=arccos$\frac{4}{5}$.
故答案為:arccos$\frac{4}{5}$.

點(diǎn)評(píng) 本題考查了向量三角形法則、向量共線共面定理、余弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.己知實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{y≤x}\\{x+2y≤4}\\{y≥-2}\end{array}\right.$,若存在x、y滿足(x+1)2+(y-1)2=r2(r>0),則r的最小值為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{4}{3}$$\sqrt{2}$D.$\frac{4}{3}$$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}的前n項(xiàng)和為Sn=n2,n∈N+
(1)證明:數(shù)列{an}是等差數(shù)列;
(2)設(shè)bn=2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知定義在R上的單調(diào)遞增奇函數(shù)f(x),若當(dāng)0≤θ≤$\frac{π}{2}$時(shí),f(cos2θ+2msinθ)+f(-2m-2)<0恒成立,則實(shí)數(shù)m的取值范圍是m>-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,A=2B,且3sinC=5sinB,則cosB=$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在四邊形ABCD中,M為BD上靠近D的三等分點(diǎn),且滿足$\overrightarrow{AM}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,則實(shí)數(shù)x,y的值分別為( 。
A.$\frac{1}{3}$,$\frac{2}{3}$B.$\frac{2}{3}$,$\frac{1}{3}$C.$\frac{1}{2}$,$\frac{1}{2}$D.$\frac{1}{4}$,$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)h(x)=x2-mx,g(x)=lnx.
(Ⅰ)當(dāng)m=-1時(shí),若函數(shù)h(x)與g(x)在x=x0處的切線平行,求兩切線間的距離;
(Ⅱ)任意x>0,不等式h(x)≥g(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$y=\frac{1}{2-x}$的圖象與函數(shù)y=2sin(πx-π)(-2≤x≤6)的圖象所有交點(diǎn)的橫坐標(biāo)之和等于( 。
A.4B.8C.10D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面直角坐標(biāo)系中,定義$\left\{\begin{array}{l}{{x}_{n+1}={y}_{n}-{x}_{n}}\\{{y}_{n+1}={y}_{n}+{x}_{n}}\end{array}\right.$(n∈N*為點(diǎn)Pn(xn,yn)到點(diǎn)Pn+1(xn+1,yn+1)的一個(gè)變換,我們把它稱為點(diǎn)變換.已知P1(0,1),P2(x2,y2),…,Pn(xn,yn),Pn+1(xn+1,yn+1)是經(jīng)過點(diǎn)變換得到的一列點(diǎn).設(shè)an=|PnPn+1|,數(shù)列{an}的前n項(xiàng)和為Sn,那么$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{a}_{n}}$的值為=2+$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案