【題目】人造地球衛(wèi)星繞地球運行遵循開普勒行星運動定律:衛(wèi)星在以地球為焦點的橢圓軌道上繞地球運行時,其運行速度是變化的,速度的變化服從面積守恒規(guī)律,即衛(wèi)星的向徑(衛(wèi)星至地球的連線)在相同的時間內(nèi)掃過的面積相等.設橢圓的長軸長、焦距分別為李明根據(jù)所學的橢圓知識,得到下列結(jié)論:

①衛(wèi)星向徑的最小值為,最大值為;

②衛(wèi)星向徑的最小值與最大值的比值越小,橢圓軌道越扁;

③衛(wèi)星運行速度在近地點時最小,在遠地點時最大

其中正確結(jié)論的個數(shù)是

A. B. C. D.

【答案】C

【解析】

根據(jù)橢圓的焦半徑的最值來判斷命題①,根據(jù)橢圓的離心率大小與橢圓的扁平程度來判斷命題②,根據(jù)題中“速度的變化服從面積守恒規(guī)律”來判斷命題③。

對于命題①,由橢圓的幾何性質(zhì)得知,橢圓上一點到焦點距離的最小值為,最大值為,所以,衛(wèi)星向徑的最小值為,最大值為,結(jié)論①正確;

對于命題②,由橢圓的幾何性質(zhì)知,當橢圓的離心率越大,橢圓越扁,衛(wèi)星向徑的最小值與最大值的比值,當這個比值越小,則越大,此時,橢圓軌道越扁,結(jié)論②正確;

對于命題③,由于速度的變化服從面積守恒規(guī)律,即衛(wèi)星的向徑在相同的時間內(nèi)掃過的面積相等,當衛(wèi)星越靠近遠地點時,向徑越大,當衛(wèi)星越靠近近地點時,向徑越小,由于在相同時間掃過的面積相等,則向徑越大,速度越小,所以,衛(wèi)星運行速度在近地點時最大,在遠地點時最小,結(jié)論③錯誤。故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了響應全民健身,加大國際體育文化的交流,蘭州市從2011年開始舉辦“蘭州國際馬拉松賽”,為了了解市民健身情況,某課題組跟蹤了蘭州某跑吧群在各屆全程馬拉松比賽中群友的平均成績(單位:小時),具體如下:

(1)求關于的線性回歸方程;

(2)利用(1)的回歸方程,分析2011年到2015年該跑吧群的成績變化情況,反映市民健身的效果,并預測2016年該跑吧群的比賽平均成績.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線處的切線方程為.

(Ⅰ)求值.

(Ⅱ)若函數(shù)有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】a為非負實數(shù),函數(shù).

1)當時,畫出函數(shù)的草圖,并寫出函數(shù)的單調(diào)遞增區(qū)間;

2)若函數(shù)有且只有一個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年4月1日,新華通訊社發(fā)布:國務院決定設立河北雄安新區(qū).消息一出,河北省雄縣、容城、安新3縣及周邊部分區(qū)域迅速成為海內(nèi)外高度關注的焦點.

(1)為了響應國家號召,北京市某高校立即在所屬的8個學院的教職員工中作了“是否愿意將學校整體搬遷至雄安新區(qū)”的問卷調(diào)查,8個學院的調(diào)查人數(shù)及統(tǒng)計數(shù)據(jù)如下:

調(diào)查人數(shù)()

10

20

30

40

50

60

70

80

愿意整體搬遷人數(shù)()

8

17

25

31

39

47

55

66

請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量關于變量的線性回歸方程保留小數(shù)點后兩位有效數(shù)字);若該校共有教職員工2500人,請預測該校愿意將學校整體搬遷至雄安新區(qū)的人數(shù);

(2)若該校的8位院長中有5位院長愿意將學校整體搬遷至雄安新區(qū),現(xiàn)該校擬在這8位院長中隨機選取4位院長組成考察團赴雄安新區(qū)進行實地考察,記為考察團中愿意將學校整體搬遷至雄安新區(qū)的院長人數(shù),求的分布列及數(shù)學期望.

參考公式及數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將數(shù)字“”重新排列后得到不同的偶數(shù)個數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,直線與圓,則直線被圓截得的弦長為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,為等邊三角形,,且,,,中點.

(1)求證:平面平面;

(2)若線段上存在點,使得二面角的大小為,求的值;

(3)在(2)的條件下,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若關于的方程有5個不同的實數(shù)解,則實數(shù)的取值范圍是 ( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案