15.如圖,四邊形ABCD內接于⊙O,AD是⊙O的直徑,若∠CBE=70°,則圓心角∠AOC=( 。
A.110°B.120°C.130°D.140°

分析 利用補角的定義、圓內接四邊形的性質求得圓周角∠ADC=70°,然后根據OD=OC可得∠OCD=∠ADC=70°,即可求得∠AOC的度數(shù).

解答 解:∵∠CBE=70°,∠CBE+∠CBA=180°,
∴∠CBA=110°;
又∵∠CBA+∠ADC=180°(圓的內接四邊形中對角互補),
∴∠ADC=70°;
∵AD是⊙O的直徑,OD=OC,
∴∠OCD=∠ADC=70°
∴∠AOC=∠OCD+∠ADC=140°.
故選:D.

點評 本題考查了圓內接四邊形的性質,圓內接四邊形的對角互補,考查了推理論證能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.已知△ABC的頂點坐標分別為A(1,1),B(4,1),C(4,5).則cosA=$\frac{3}{5}$;△ABC的邊AC上的高h=$\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{13π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.一個幾何體的三視圖如圖所示,該幾何體的體積為( 。
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$\frac{8}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.πD.$\frac{4π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知f(x)=|x-$\frac{1}{2}$|+|x-$\frac{3}{2}$|,記f(x)≤2的解集為M.
(Ⅰ)求集合M
(Ⅱ)若a∈M,試比較a2-a+1與$\frac{1}{a}$的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=m-|x-3|,不等式f(x)>1的解集為(1,5);
(1)求實數(shù)m的值;
(2)若關于x的不等式|x-a|≥f(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設|x-2|≤a(a>0)時,不等式|x2-4|<3成立,則正數(shù)a的取值范圍為( 。
A.a>$\sqrt{7}$-2B.0<a<$\sqrt{7}$-2C.a≥$\sqrt{7}$-2D.0<a≤$\sqrt{7}$-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11,則a0+a1+a2+…+a11=-2,a11=512.

查看答案和解析>>

同步練習冊答案