A. | ①④ | B. | ②④ | C. | ②③ | D. | ②③④ |
分析 函數(shù)g(x)=kx+b(k,b為常數(shù))是函數(shù)f(x)的一個承托函數(shù),即說明函數(shù)f(x)的圖象恒在函數(shù)g(x)的上方(至多有一個交點);
解答 解:函數(shù)g(x)=kx+b(k,b為常數(shù))是函數(shù)f(x)的一個承托函數(shù),即說明函數(shù)f(x)的圖象恒在函數(shù)g(x)的上方(至多有一個交點);
①f(x)=x3 的值域為R,所以不存在函數(shù)g(x),使得函數(shù)f(x)的圖象恒在g(x)的上方,故不存在承托函數(shù);
②f(x)=2-x>0,所以y=A(A≤0)都是函數(shù)f(x)的承托函數(shù),故②正確;
③∵f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{0,x≤0}\end{array}\right.$的值域為R,所以不存在函數(shù)g(x),使得函數(shù)f(x)的圖象恒在g(x)的上方,故不存在承托函數(shù);
④f(x)=x+sinx≥x-1,所以存在函數(shù)g(x)=x-1使得函數(shù)f(x)的圖形恒在函數(shù)g(x)的上方,故存在承托函數(shù).
故答案為:②④
點評 本題考查了對新定義的理解與應(yīng)用,以及對函數(shù)值域與性質(zhì)的綜合理解,屬中等題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {-1} | B. | {-1,0} | C. | {0,1} | D. | {0} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com