【題目】某學(xué)校為準(zhǔn)備參加市運動會,對本校高一、高二兩個田徑隊中30名跳高運動員進(jìn)行了測試,并用莖葉圖表示出本次測試30人的跳高成績(單位:cm).跳高成績在175cm以上(包括175cm)定義為“合格”,成績在175cm以下定義為“不合格”.
(1)如果從所有運動員中用分層抽樣抽取“合格”與“不合格”的人數(shù)共10人,問就抽取“合格”人數(shù)是多少?
(2)若從所有“合格”運動員中選取2名,用X表示所選運動員來自高一隊的人數(shù),試寫出X的分布圖,并求X的數(shù)學(xué)期望.
【答案】解:(1)根據(jù)莖葉圖可得:“合格”的人數(shù)有12,“不合格”人數(shù)有18,
用分層抽樣的方法,每個運動員被抽中的概率是=,
所以抽取“合格”人數(shù)是12×=4
(2)以題意得:X的值為:0,1,2.
則P(X=0)===,
P(X=1)===,
P(X=2)===
X的分布:
X | 0 | 1 | 2 |
P |
X的數(shù)學(xué)期望:0×+1x+2x==
【解析】(1)運用分層抽樣求解.
(2)先確定X的值為:0,1,2.再求P(X=0),P(X=1),P(X=2)
列出概率分布,求出數(shù)學(xué)期望.
【考點精析】根據(jù)題目的已知條件,利用莖葉圖的相關(guān)知識可以得到問題的答案,需要掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)(x∈R)滿足f(x)=f(2-x),且對任意的x1,x2∈(-∞,1](x1≠x2)有(x1-x2)(f(x1)-f(x2))<0.則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題:
①圓與直線相交,所得弦長為;
②直線與圓恒有公共點;
③若棱長為的正方體的頂點都在同一球面上,則該球的表面積為;
④若棱長為的正四面體的頂點都在同一球面上,則該球的體積為.
其中,正確命題的序號為__________.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}共有5項,其中a1=0,a5=2,且|ai+1﹣ai|=1,i=1,2,3,4,則滿足條件的不同數(shù)列的個數(shù)為( 。
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x),滿足f(2)=0,函數(shù)y=f(x+1)的圖象關(guān)于點(-1,0)中心對稱,且對任意的負(fù)數(shù)x1,x2(x1≠x2),恒成立,則不等式f(x)<0的解集為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(其中a∈R).
(1)討論函數(shù)f(x)的奇偶性,并說明理由.
(2)若,試判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性,并用函數(shù)單調(diào)性定義給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域為R的函數(shù)f(x)滿足:對于任意的實數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且當(dāng)x<0時,f(x)>0恒成立,且nf(x)=f(nx).(n是一個給定的正整數(shù)).
(1)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(2)證明f(x)為減函數(shù);若函數(shù)f(x)在[-2,5]上總有f(x)≤10成立,試確定f(1)應(yīng)滿足的條件;
(3)當(dāng)a<0時,解關(guān)于x的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過、兩點,且圓心在直線上.
(1)求圓C的方程;
(2)若直線經(jīng)過點且與圓C相切,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com