【題目】定義域?yàn)?/span>R的函數(shù)f(x)滿足:對(duì)于任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且當(dāng)x<0時(shí),f(x)>0恒成立,且nf(x)=f(nx).(n是一個(gè)給定的正整數(shù)).
(1)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(2)證明f(x)為減函數(shù);若函數(shù)f(x)在[-2,5]上總有f(x)≤10成立,試確定f(1)應(yīng)滿足的條件;
(3)當(dāng)a<0時(shí),解關(guān)于x的不等式.
【答案】(1)見(jiàn)解析;(2)f(1)[-5,0);(3)見(jiàn)解析
【解析】
(1)利用函數(shù)奇偶性的定義,結(jié)合抽象函數(shù)關(guān)系,利用賦值法進(jìn)行證明
(2)結(jié)合函數(shù)單調(diào)性的定義以及最值函數(shù)成立問(wèn)題進(jìn)行證明即可
(3)利用抽象函數(shù)關(guān)系,結(jié)合函數(shù)奇偶性和單調(diào)性定義轉(zhuǎn)化為一元二次不等式,討論參數(shù)的范圍進(jìn)行求解即可
(1)f(x)為奇函數(shù),證明如下;
由已知對(duì)于任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)恒成立.
令x=y=0,得f(0+0)=f(0)+f(0),所以f(0)=0.
令y=-x,得f(x-x)=f(x)+f(-x)=0.
所以對(duì)于任意x,都有f(-x)=-f(x).
所以f(x)是奇函數(shù).
(2)設(shè)任意x1,x2且x1<x2,則x2-x1>0,由已知f(x2-x1)<0,
又f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1)<0,得f(x2)<f(x1),
根據(jù)函數(shù)單調(diào)性的定義和奇函數(shù)的性質(zhì)知f(x)在(-∞,+∞)上是減函數(shù).
所以f(x)在[-2,5]上的最大值為f(-2).
要使f(x)≤10恒成立,當(dāng)且僅當(dāng)f(-2)≤10,
又因?yàn)?/span>f(-2)=-f(2)=-f(1+1)=-2f(1),所以f(1)≥-5.
又x>1,f(x)<0,所以f(1)∈[-5,0).
(3)∵.,
∴f(ax2)-f(a2x)>n2[f(x)-f(a)].
所以f(ax2-a2x)>n2f(x-a),
所以f(ax2-a2x)>f[n2(x-a)],
因?yàn)?/span>f(x)在(-∞,+∞)上是減函數(shù),
所以ax2-a2x<n2(x-a).
即(x-a)(ax-n2)<0,
因?yàn)?/span>a<0,所以(x-a)(x)>0.
討論:
①當(dāng)a<<0,即a<-n時(shí),原不等式的解集為{x|x>或x<a};
②當(dāng)a=,即a=-n時(shí),原不等式的解集為{x|x≠-n};
③當(dāng)<a<0,即-n<a<0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是最近十屆奧運(yùn)會(huì)的年份、屆別、主辦國(guó),以及主辦國(guó)在上屆獲得的金牌數(shù)、當(dāng)屆
獲得的金牌數(shù)的統(tǒng)計(jì)數(shù)據(jù):
年份 | 1972 | 1976 | 1980 | 1984 | 1988 | 1992 | 1996 | 2000 | 2004 | 2008 |
屆別 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
主辦國(guó)家 | 聯(lián)邦 德國(guó) | 加拿大 | 蘇聯(lián) | 美國(guó) | 韓國(guó) | 西班牙 | 美國(guó) | 澳大 利亞 | 希臘 | 中國(guó) |
上屆金牌數(shù) | 5 | 0 | 49 | 未參加 | 6 | 1 | 37 | 9 | 4 | 32 |
當(dāng)界金牌數(shù) | 13 | 0 | 80 | 83 | 12 | 13 | 44 | 16 | 6 | 51 |
某體育愛(ài)好組織,利用上表研究所獲金牌數(shù)與主辦奧運(yùn)會(huì)之間的關(guān)系,
(1)求出主辦國(guó)在上屆所獲金牌數(shù)(設(shè)為)與在當(dāng)屆所獲金牌數(shù)(設(shè)為)之間的線性回歸方程
其中
(2)在2008年第29屆北京奧運(yùn)會(huì)上日本獲得9塊金牌,則據(jù)此線性回歸方程估計(jì)在2020 年第 32 屆東
京奧運(yùn)會(huì)上日本將獲得的金牌數(shù)為(所有金牌數(shù)精確到整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)和在的圖象如圖所示:
給出下列四個(gè)命題:
(1)方程有且僅有6個(gè)根;
(2)方程有且僅有3個(gè)根;
(3)方程有且僅有5個(gè)根;
(4)方程有且僅有4個(gè)根.
其中正確命題的個(gè)數(shù)是( )
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為準(zhǔn)備參加市運(yùn)動(dòng)會(huì),對(duì)本校高一、高二兩個(gè)田徑隊(duì)中30名跳高運(yùn)動(dòng)員進(jìn)行了測(cè)試,并用莖葉圖表示出本次測(cè)試30人的跳高成績(jī)(單位:cm).跳高成績(jī)?cè)?75cm以上(包括175cm)定義為“合格”,成績(jī)?cè)?75cm以下定義為“不合格”.
(1)如果從所有運(yùn)動(dòng)員中用分層抽樣抽取“合格”與“不合格”的人數(shù)共10人,問(wèn)就抽取“合格”人數(shù)是多少?
(2)若從所有“合格”運(yùn)動(dòng)員中選取2名,用X表示所選運(yùn)動(dòng)員來(lái)自高一隊(duì)的人數(shù),試寫(xiě)出X的分布圖,并求X的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an},{bn}中,a1=2,b1=4且an , bn , an+1成等差數(shù)列,bn , an+1 , bn+1成等比數(shù)列(n∈N*)
(1)求a2 , a3 , a4及b2 , b3 , b4;由此歸納出{an},{bn}的通項(xiàng)公式,并證明你的結(jié)論.
(2)若cn=log2(),Sn=c1+c2+…+cn , 試問(wèn)是否存在正整數(shù)m,使Sm≥5,若存在,求最小的正整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(2x﹣)x,則下列結(jié)論中正確的是( )
A.若﹣3≤m<n,則f(m)<f(n)
B.若m<n≤0,則f(m)<f(n)
C.若f(m)<f(n),則m2<n2
D.若f(m)<f(n),則m3<n3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上除A、B外的一個(gè)動(dòng)點(diǎn),DC垂直于半圓O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB= .
證明:平面ADE⊥平面ACD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列向量組中,可以把向量=(3,2)表示出來(lái)的是( )
A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)
C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),是奇函數(shù).
(1)求,的值;
(2)證明:是區(qū)間上的減函數(shù);
(3)若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com