已知橢圓
的一條準線方程是
其左、右頂點分別是A、B;雙曲線
的一條漸近線方程為3x-5y=0.
(Ⅰ)求橢圓C
1的方程及雙曲線C
2的離心率;
(Ⅱ)在第一象限內(nèi)取雙曲線C
2上一點P,連結(jié)AP交橢圓C
1于點M,連結(jié)PB并延長交橢圓C
1于點N,若
. 求證:
(I)雙曲線的離心率
(Ⅱ)證明見解析
(I)由已知
∴橢圓的方程為
,雙曲線的方程
.
又
∴雙曲線的離心率
(Ⅱ)由(Ⅰ)A(-5,0),B(5,0) 設(shè)M
得M為AP的中點
∴P點坐標為
將M、p坐標代入c
1、c
2方程得
消去y
0得
解之得
由此可得P(10,
當P為(10,
時 PB:
即
代入
MN⊥x軸 即
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系中,O為坐標原點,已知兩點M(1,—3)、N(5,1),若動點C滿足
交于A、B兩點。
(I)求證:
;
(2)在
x軸上是否存在一點
,使得過點P的直線
l交拋物線
于D、E兩點,并以線段DE為直徑的圓都過原點。若存在,請求出m的值,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知定點A(-2,-4),過點A作傾斜角為45 的直線l,交拋物線y2=2px(p>0)于B、C兩點,且|BC|=210.(Ⅰ)求拋物線的方程;(Ⅱ)在(Ⅰ)中的拋物線上是否存在點D,使得|DB|=|DC|成立?如果存在,求出點D的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知點C為圓
的圓心,點A(1,0),P是圓上的動點,點Q在圓的半徑CP上,且
(Ⅰ)當點P在圓上運動時,求點Q的軌跡方程;
(Ⅱ)若直線
與(Ⅰ)中所求點Q的軌跡交于不同兩點F,H,O是坐標原點,且
,求△FOH的面積的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
直角坐標系xoy中,角
的始邊為x軸的非負半軸,終邊為射線l:y=
x (x≥0).
(1)求
的值;
(2)若點P,Q分別是角
始邊、終邊上的動點,且PQ=4,求△POQ面積最大時,點P,Q的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知雙曲線
的左、右焦點分別是
F1、
F2.(1)求雙曲線上滿足
的點P的坐標;
(2)橢圓
C2的左、右頂點分別是雙曲線
C1的左、右焦點,橢圓
C2的左、右焦點分別是雙曲線
C1的左、右頂點,若直線
與橢圓恒有兩個不同的交點
A和
B,且
(其中
O為坐標原點),求
k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知兩條直線l1:2x-3y+2=0和l2:3x-2y+3=0,有一動圓(圓心和半徑都動)與l1、l2都相交,且l1、l2被圓截得的弦長分別是定值26和24,求圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知雙曲線方程為
,以定點
為中點的弦存在嗎?若存在,求出其所在直線的方程,若不存在,請說明理由.
查看答案和解析>>