已知兩條直線l1:2x-3y+2=0和l2:3x-2y+3=0,有一動圓(圓心和半徑都動)與l1、l2都相交,且l1、l2被圓截得的弦長分別是定值26和24,求圓心的軌跡方程.
(x+1)2-y2=65
設(shè)動圓的圓心為M(x,y),半徑為r,點M到直線l1,l2的距離分別為d1和d2.
由弦心距、半徑、半弦長間的關(guān)系得,

消去r得動點M滿足的幾何關(guān)系為=25,
=25.
化簡得(x+1)2-y2=65.此即為所求的動圓圓心M的軌跡方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一條準(zhǔn)線方程是其左、右頂點分別是A、B;雙曲線的一條漸近線方程為3x-5y=0.
(Ⅰ)求橢圓C1的方程及雙曲線C2的離心率;
(Ⅱ)在第一象限內(nèi)取雙曲線C2上一點P,連結(jié)AP交橢圓C1于點M,連結(jié)PB并延長交橢圓C1于點N,若. 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)設(shè)直線與橢圓相切。 (I)試將表示出來; (Ⅱ)若經(jīng)過動點可以向橢圓引兩條互相垂直的切線,為坐標(biāo)原點,求證:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)如圖,,分別是橢圓ab>0)的左右焦點,M為橢圓上一點,垂直于x軸,且OM與橢圓長軸和短軸端點的連線AB平行。
(1)求橢圓的離心率;
(2)若G為橢圓上不同于長軸端點任一點,求∠取值范圍;
(3)過且與OM垂直的直線交橢圓于P、Q
求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的方程是
(1)若曲線是橢圓,求的取值范圍;
(2)若曲線是雙曲線,且有一條漸近線的傾斜角是,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x2上存在兩個不同的點M、N,關(guān)于直線y=-kx+對稱,求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線的頂點在坐標(biāo)原點,且開口向右,點A,BC在拋物線上,△ABC的重心F為拋物線的焦點,直線AB的方程為。
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)點M為某定點,過點M的動直線l與拋物線相交于P,Q兩點,試推斷是否存在定點M,使得以線段PQ為直徑的圓經(jīng)過坐標(biāo)原點?若存在,求點M的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,右準(zhǔn)線的方程為,傾斜角為的直線交橢圓兩點,且的中點坐標(biāo)為,設(shè)為橢圓的右頂點,為橢圓上兩點,且,,三者的平方成等差數(shù)列,則直線斜率之積的絕對值是否為定值,若是,請求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出下列結(jié)論,其中正確的是(   ).
A.漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程一定是
B.拋物線的準(zhǔn)線方程是
C.等軸雙曲線的離心率是
D.橢圓的焦點坐標(biāo)是

查看答案和解析>>

同步練習(xí)冊答案