1,3,5

 
已知雙曲線的左、右焦點分別是F1F2.

(1)求雙曲線上滿足的點P的坐標(biāo);
(2)橢圓C2的左、右頂點分別是雙曲線C1的左、右焦點,橢圓C2的左、右焦點分別是雙曲線C1的左、右頂點,若直線與橢圓恒有兩個不同的交點AB,且(其中O為坐標(biāo)原點),求k的取值范圍.

(1) (2)

(I)由上,
解方程組
(II)由題意得橢圓方程:
設(shè)A(x1,y1)B(x2,y2),則

     解得
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一條準(zhǔn)線方程是其左、右頂點分別是A、B;雙曲線的一條漸近線方程為3x-5y=0.
(Ⅰ)求橢圓C1的方程及雙曲線C2的離心率;
(Ⅱ)在第一象限內(nèi)取雙曲線C2上一點P,連結(jié)AP交橢圓C1于點M,連結(jié)PB并延長交橢圓C1于點N,若. 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓:上的兩點A(0,)和點B,若以AB為邊作正△ABC,當(dāng)B變動時,計算△ABC的最大面積及其條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)如圖,,分別是橢圓ab>0)的左右焦點,M為橢圓上一點,垂直于x軸,且OM與橢圓長軸和短軸端點的連線AB平行。
(1)求橢圓的離心率;
(2)若G為橢圓上不同于長軸端點任一點,求∠取值范圍;
(3)過且與OM垂直的直線交橢圓于P、Q
求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的方程是
(1)若曲線是橢圓,求的取值范圍;
(2)若曲線是雙曲線,且有一條漸近線的傾斜角是,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x2上存在兩個不同的點MN,關(guān)于直線y=-kx+對稱,求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求證:雙曲線上任何一點到兩條漸近線的距離之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓的離心率是,則雙曲線的離心率是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若拋物線y2=mx與橢圓=1有一個共同的焦點,則m=______________.

查看答案和解析>>

同步練習(xí)冊答案