如圖:四棱錐P-ABCD的底面為矩形,且AB=
BC,E、F分別為棱AB、PC的中點。
(1)求證:EF//平面PAD;
(2)若點P在平面ABCD內(nèi)的正投影O在直線AC上,求證:平面PAC⊥平面PDE
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題13分)如圖,在四棱錐
中,
底面
是矩形,側(cè)棱PD⊥底面
,
,
是
的中點,作
⊥
交
于點
.
(1)證明:
∥平面
;
(2)證明:
⊥平面
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)如圖,四邊形
為矩形,
平面
,
,
平面
于點
,且點
在
上,點
是線段
的中點。
(1)求證:
;
(2)求三棱錐
的體積;
(3)
試在線段
上確定一點
,使得
平面
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,四棱錐
P-ABCD中,底面
ABCD為菱形,且
,側(cè)面
PAD是正三角形,其所在的平面垂直于底面
ABCD,點
G為
AD的中點.
(1)求證:
BG面
PAD;
(2)
E是
BC的中點,在
PC上求一點
F,使得
PG面
DEF.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
⊿ABC中,AB=AC=5,BC=6,PA
平面ABC,則點P到BC的距離是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本大題8分)已知正方體
,求:
(1)異面直線
與
所成的角;
(2)證明:直線
//平面
C
(3)二面角D— A
B—C
的大;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,
∥
,AD=CD=1,∠
=120°,
=
,∠
=90°,M是線段PD上的一點(不包括端點).
(1)求證:BC⊥平面PAC;
(2)求異面直線AC與PD所成的角的余弦值
(3)試確定點M的位置,使直線MA與平面PCD所成角
的正弦值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在多面體
ABCDEF中,
ABCD是正方形,
AB=2
EF=2,
,
EF⊥
FB,∠
BFC=
,
BF=
FC,
H為
BC的中點.
(Ⅰ)求證:
平面
EDB;
(Ⅱ)求證:
AC⊥平面
EDB;
(Ⅲ)求四面體
B—
DEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
.設(shè)地球半徑為R,如果A、B兩點在北偉
30°的緯線上,它們的經(jīng)度差為
,則A、B兩點的球面距離為 ( )
A.
B.
C.
D.
查看答案和解析>>