已知an=
n(n+1)
6
,求前n項和.
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:an=
n(n+1)
6
=
1
6
n2+
1
6
n
.而12+22+32+…+n2=
n(n+1)(2n+1)
6
,1+2+3+…+n=
n(n+1)
2
.代入即可得出.
解答: 解:an=
n(n+1)
6
=
1
6
n2+
1
6
n

∵12+22+32+…+n2=
n(n+1)(2n+1)
6
,
1+2+3+…+n=
n(n+1)
2

∴Sn=
1
6
×
n(n+1)(2n+1)
6
+
1
6
×
n(n+1)
2

=
n(n+1)(2n+1)+3(n+1)n
36

=
n(n+1)(n+2)
18
點(diǎn)評:本題考查了等差數(shù)列的前n項和公式、與12+22+32+…+n2=
n(n+1)(2n+1)
6
,考查了推理能力與計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象在y軸上的截距為1,它在y軸右側(cè)的第一個最大值點(diǎn)和最小值點(diǎn)分別為(x0,2)和(x0+3π,-2).
(1)試求f(x)的解析式;
(2)將y=f(x)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的
1
3
倍(縱坐標(biāo)不變),然后再將新的圖象向軸正方向平移
π
3
個單位,得到函數(shù)y=g(x)的圖象.寫出函數(shù)y=g(x)的解析式并用列表作圖的方法畫出y=g(x)在長度為一個周期的閉區(qū)間上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從集合{-1,1,2}中隨機(jī)選取一個數(shù)記為m,從集合{-1,2}中隨機(jī)選取一個數(shù)記為n,則方程
x2
m
+
y2
n
=1表示雙曲線的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市缺水問題比較突出,為了制定水管理辦法,對全市居民某年的月均用水量進(jìn)行了抽樣調(diào)查,其中n位居民的月均用水量分別為x1,x2,…xn(單位:噸),根據(jù)如圖所示的程序框圖,若n=3,且x1,x2,x3,分別為1,2,3,則輸出的結(jié)果S為( 。
A、
1
4
B、
1
2
C、
3
4
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若非零向量
a
,
b
滿足|
a
+
b
|=|
a
-
b
|=2|
b
|,則
a
+
b
a
-
b
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y為正實數(shù),則下列各關(guān)系式正確的是( 。
A、2lgx+lgy=2lgx+2lgy
B、2lg(x+y)=2lgx•2lgy
C、2lgx•lgy=2lgx+2lgy
D、2lg(xy)=2lgx•2lgy

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈R,則函數(shù)f(x)=
x2+x+1
-
x2-x+1
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求關(guān)于x的不等式x2-3ax+2a2<0的解集.
(2)若p:實數(shù)x滿足1<x<4是q:實數(shù)x滿足x2-3ax+2a2<0的必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若a1=-11,a5=-3,則當(dāng)Sn取最小值時,n等于
 

查看答案和解析>>

同步練習(xí)冊答案