(本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點(diǎn),F(xiàn)是AD的中點(diǎn).
⑴求異面直線PD與AE所成角的大。
⑵求證:EF⊥平面PBC ;
⑶求二面角F—PC—B的大小..
(Ⅰ)連結(jié)BD ∵PD⊥平面ABCD,
∴平面PDB⊥平面ABCD,
過(guò)點(diǎn)E作EO⊥BD于O,連結(jié)AO.
則EO∥PD,且EO⊥平面ABCD
.∴∠AEO為異面直線PD,AE所成的角…………3分
∵E是PB的中點(diǎn),則O是BD的中點(diǎn),且EO=PD=1.
在Rt△EOA中,AO=, .
即異面直線PD與AE所成角的大小為 …………………………… 4分
(Ⅱ)連結(jié)FO, ∵F是AD的中點(diǎn), ∴OF⊥AD.∵EO⊥平面ABCD,
由三垂線定理,得EF⊥AD.又∵AD∥BC,∴EF⊥BC. ………………… 6分
連結(jié)FB.可求得FB = PF =則EF⊥PB.又∵PB∩BC = B,∴EF⊥平面PBC. …………………8分
(Ⅲ)取PC的中點(diǎn)G,連結(jié)EG,F(xiàn)G.則EG是FG在平面PBC內(nèi)的射影
∵PD⊥平面ABCD, ∴PD⊥BC又DC⊥BC,且PD∩DC = D,
∴BC⊥平面PDC,∴BC⊥PC,∵EG∥BC,則EG⊥PC∴FG⊥PC
∴∠FGE是二面角F—PC—B的平面角 ………………………………………10分
在Rt△FEG中,EG=BC = 1,GF = ,
∴二面角F—PC—B的大小為…12分
說(shuō)明:如學(xué)生用向量法解題,則建立坐標(biāo)系給寫(xiě)出相關(guān)點(diǎn)的坐標(biāo)給2分,第(1)問(wèn)正確給
2分,第(2)問(wèn)正確給4分,第(3)問(wèn)正確給4分。
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014屆江西高安中學(xué)高二上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,為的中點(diǎn).
(1)當(dāng)時(shí),求平面與平面的夾角的余弦值;
(2)當(dāng)為何值時(shí),在棱上存在點(diǎn),使平面?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省八市高三3月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)如圖,在長(zhǎng)方體中,已知上下兩底面為正方形,且邊長(zhǎng)均為1;側(cè)棱,為中點(diǎn),為中點(diǎn),為上一個(gè)動(dòng)點(diǎn).
(Ⅰ)確定點(diǎn)的位置,使得;
(Ⅱ)當(dāng)時(shí),求二面角的平
面角余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年湖南省招生統(tǒng)一考試文科數(shù)學(xué) 題型:解答題
(本題滿分12分)
如圖3,在圓錐中,已知的直徑的中點(diǎn).
(I)證明:
(II)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年海南省高三五校聯(lián)考數(shù)學(xué)(文) 題型:解答題
(本題滿分12分)
如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點(diǎn),SA=SB=SC。
(1)求證:BC⊥平面SDE;
(2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com