已知拋物線
的焦點與橢圓
的右焦點重合.(Ⅰ)求拋物線
的方程;
(Ⅱ)動直線
恒過點
與拋物線
交于
A、
B兩點,與
軸交于
C點,請你觀察并判斷:在線段
MA,
MB,
MC,
AB中,哪三條線段的長總能構(gòu)成等比數(shù)列?說明你的結(jié)論并給出證明.
(Ⅰ)
(Ⅱ)存在三線段
MA、
MC、
MB的長成等比數(shù)列.
試題分析:(Ⅰ)∵橢圓方程為:
,∴
,
所以
,橢圓的右焦點為(1 , 0),拋物線的焦點為(
,0),所以
=2,
則拋物線的方程為
(Ⅱ)設(shè)直線
l:
,則C(-
,0),
由
得
,
因為△=
,所以
k<1,
設(shè)
A(
x1,
y1),
B(
x2,
y2),則
,
,
所以由弦長公式得:
,
,
,
,
通過觀察得:
=(
)·
=(
)·
=
.
若
=
,則
,不滿足題目要求.
所以存在三線段
MA、
MC、
MB的長成等比數(shù)列.
點評:本題考查橢圓的方程與性質(zhì),考查拋物線的方程,考查直線與武平縣的位置關(guān)系,考查韋達定理的運用,考查等比數(shù)列的判定,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,橢圓
的頂點為
,焦點為
,
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)n 為過原點的直線,
是與n垂直相交于P點,與橢圓相交于A, B兩點的直線,
.是否存在上述直線
使
成立?若存在,求出直線
的方程;并說出;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知點
P是雙曲線
C:
左支上一點,
F1,
F2是雙曲線的左、右兩個焦點,且
PF1⊥
PF2,
PF2與兩條漸近線相交于
M,N兩點(如圖),點
N恰好平分線段
PF2,則雙曲線的離心率是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在橢圓
上找一點,使這一點到直線
的距離為最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知直線
l過雙曲線
C的一個焦點,且與
C的對稱軸垂直,
l與
C交于
A、
B兩點,
為
C的實軸長的2倍,則雙曲線
C的離心率為( )
A. | B.2 | C. | D.3 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)橢圓
:
的離心率為
,點
、
,原點
到直線
的距離為
.
(1)求橢圓
的方程;
(2)設(shè)點
,點
在橢圓
上(與
、
均不重合),點
在直線
上,若直線
的方程為
,且
,試求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的左右焦點分別為
、
,離心率
,直線
經(jīng)過左焦點
.
(1)求橢圓
的方程;
(2)若
為橢圓
上的點,求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若點
在以點
為焦點的拋物線
上,則
等于__________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在極坐標(biāo)系中,已知圓
經(jīng)過點
,圓心為直線
與極軸的交點,求圓
的極坐標(biāo)方程.
查看答案和解析>>