定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當(dāng)-3≤x<-1時(shí),f(x)=-(x+2)2,當(dāng)-1≤x<3時(shí),f(x)=x.則f(1)+f(2)+f(3)+…+f(2012)=
 
考點(diǎn):函數(shù)的周期性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知可得f(1)=1,f(2)=2,f(3)=-1,f(4)=0,f(5)=-1,f(6)=0,根據(jù)函數(shù)的周期性可得:f(1)+f(2)+f(3)+…+f(2 012)=335×[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(1)+f(2),代入可得答案.
解答: 解:∵當(dāng)-3≤x<-1時(shí),f(x)=-(x+2)2
∴f(-3)=-1,f(-2)=0,
∵當(dāng)-1≤x<3時(shí),f(x)=x,
∴f(-1)=-1,f(0)=0,f(1)=1,f(2)=2,
又∵f(x+6)=f(x).
故f(3)=-1,f(4)=0,f(5)=-1,f(6)=0,
又∵2012=335×6+2,
故f(1)+f(2)+f(3)+…+f(2 012)=335×[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(1)+f(2)=335+1+2=338,
故答案為:338
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的周期性,數(shù)列求和,按周期分組求和是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,若S5=25,且S1,S2,S4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)bn=
1
Sn
(n∈N*),證明:對(duì)一切正整數(shù)n,有b1+b2+…+bn
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x丨x2-3x+2=0},B={x丨a-1<x<2a+3},A∩B=A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x丨3≤x<7},B={x丨2<x<10},求∁R(A∪B),∁R(A∩B),(∁RA)∩B,A∪(∁RB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
b
,滿足|
a
|=3,|
b
|=2
3
,且
a
⊥(
a
+
b
),則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1-x2,x≤1
x2+x-2,x>1
,則f(4)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx-ax+
1-a
x
-1.
(1)當(dāng)a=1時(shí),求曲線f(x)在x=1處的切線方程;
(2)當(dāng)a=
1
3
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù)g(x)=x2-2bx-
5
12
,若對(duì)于?x1∈[1,2],?x1∈[0,1],使f(x1)≥g(x2)成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)多面體的直觀圖和三視圖(主觀圖、左視圖、俯視圖)如圖所示,M、N分別為A1B、B1C1的中點(diǎn).
(1)求證:MN∥平面ACC1A1
(2)求證:MN⊥平面A1BC;
(3)求二面角A-A1B-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)某種產(chǎn)品的月產(chǎn)量y與月份x之間滿足關(guān)系y=a•0.5x+b.現(xiàn)已知該廠今年1月份、2月份生產(chǎn)該產(chǎn)品分別為1萬(wàn)件、1.5萬(wàn)件.則此工廠3月份該產(chǎn)品的產(chǎn)量為
 
萬(wàn)件.

查看答案和解析>>

同步練習(xí)冊(cè)答案