19.已知等比數(shù)列{an}的前n項(xiàng)和為Sn=2n+a,n∈N*,則實(shí)數(shù)a的值是(  )
A.-3B.3C.-1D.1

分析 等比數(shù)列{an}的前n項(xiàng)和為Sn=2n+a,n∈N*,可得a1=S1=2+a,a1+a2=4+a,a1+a2+a3=8+a,解出利用等比數(shù)列的性質(zhì)即可得出.

解答 解:∵等比數(shù)列{an}的前n項(xiàng)和為Sn=2n+a,n∈N*,
∴a1=S1=2+a,a1+a2=4+a,a1+a2+a3=8+a,
解得a1=2+a,a2=2,a3=4.
∵22=4(2+a),
解得a=-1.
故選:C.

點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì)、求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖①在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E,F(xiàn),G分別是線段PC、PD,BC的中點(diǎn),現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD(如圖②)
(Ⅰ)求證AP∥平面EFG;
(Ⅱ)求三棱錐P-EFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,若b2+c2=2,則△ABC的面積的最大值為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在空間直角坐標(biāo)系中,已知A(2,4,3),B(1,3,2),則|AB|=(  )
A.3B.1C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.近年來我國電子商務(wù)行業(yè)迎來蓬勃發(fā)展的新機(jī)遇,網(wǎng)購成了大眾購物的一個重要組成部分,可人們在開心購物的同時,假冒偽劣產(chǎn)品也在各大購物網(wǎng)站頻頻出現(xiàn),為了讓顧客能夠在網(wǎng)上買到貨真價實(shí)的好東西,各大購物平臺也推出了對商品和服務(wù)的評價體系,現(xiàn)從某購物網(wǎng)站的評價系統(tǒng)中選出100次成功的交易,并對其評價進(jìn)行統(tǒng)計,對商品的好評率為$\frac{3}{5}$,對服務(wù)的好評率為$\frac{2}{5}$,其中對商品和服務(wù)都做出好評的交易為30次.
(1)列出關(guān)于商品和服務(wù)評價的2×2列聯(lián)表,并判斷是否可以在犯錯誤概率不超過1%的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān)?
(2)若針對商品的好評率,采用分層抽樣的方式從這100次交易中取出5次交易,并從中選擇兩次交易進(jìn)行客戶回訪,求只有一次好評的概率.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)(1-$\frac{2}{x}$)3=a0+a1•$\frac{1}{x}$+a2•($\frac{1}{x}$)2+a3•($\frac{1}{x}$)3,則a1+a2=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=ln(2x-1)+$\frac{1}{\sqrt{2-{x}^{2}}}$的定義域?yàn)椋?,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列等式成立的是(  )
A.$\root{n}{{a}^{n}}$=aB.($\frac{n}{m}$)7=n${\;}^{\frac{1}{7}}$m7C.$\root{12}{(-2)^{4}}$=$\root{3}{-2}$D.$\sqrt{\root{3}{9}}$=$\root{3}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(2+a)x+1,x<1}\\{-ax,x≥1}\end{array}\right.$是(-∞,+∞)上的增函數(shù),則實(shí)數(shù)a的取值范圍是(-2,-$\frac{3}{2}$].

查看答案和解析>>

同步練習(xí)冊答案