2.一根鐵絲長(zhǎng)為6米,鐵絲上有5個(gè)節(jié)點(diǎn)將鐵絲6等分,現(xiàn)從5個(gè)節(jié)點(diǎn)中隨機(jī)選一個(gè)將鐵絲剪斷,則所得的兩段鐵絲長(zhǎng)均不小于2米的概率為$\frac{3}{5}$.

分析 從5個(gè)節(jié)點(diǎn)中隨機(jī)選一個(gè)將繩子剪斷,有5種剪法,所得的兩段繩長(zhǎng)均不小于2米的剪法有3種,由此能求出所得的兩段繩長(zhǎng)均不小于2米的概率.

解答 解:從5個(gè)節(jié)點(diǎn)中隨機(jī)選一個(gè)將繩子剪斷,有5種剪法,
所得的兩段繩長(zhǎng)均不小于2米的剪法有3種,
∴所得的兩段繩長(zhǎng)均不小于2米的概率為P=$\frac{3}{5}$.
故答案為:$\frac{3}{5}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若2a5+3a7+2a9=14,則S13等于( 。
A.26B.28C.52D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.近年來(lái)空氣污染是生活中一個(gè)重要的話題,PM2.5就是空氣質(zhì)量的其中一個(gè)重要指標(biāo),各省、市、縣均要進(jìn)行實(shí)時(shí)監(jiān)測(cè).空氣質(zhì)量指數(shù)要求PM2.5 24小時(shí)濃度均值分:估[0,35]、良(35,75],輕度污染(75,115],中度污染(115,150],重度污染(150,250],嚴(yán)重污染(250,500]六級(jí).如圖是池州市2016年2月1日至3月1日共30天的PM2.5 24小時(shí)濃度均值數(shù)據(jù).

(Ⅰ)根據(jù)數(shù)據(jù)繪制頻率分布表,并求PM2.5 24小時(shí)濃度均值的中位數(shù);
空氣質(zhì)量指數(shù)類別頻數(shù)頻率
優(yōu)[0,35]
良(35,75]
輕度污染(75,115]
中度污染(115,150]
重度污染(150,250]
嚴(yán)重污染(250,500]
合計(jì)301
(Ⅱ)專家建議,空氣質(zhì)量為優(yōu)、良、輕度污染時(shí)可以正常進(jìn)行戶外活動(dòng),中度污染及以上時(shí),取消一切戶外活動(dòng).池州市某家庭準(zhǔn)備在2016年2月1日至3月1日間連續(xù)兩天在外郊游(假設(shè)數(shù)據(jù)為出游前的預(yù)報(bào)數(shù)據(jù)),家庭考慮小孩的因素,選擇空氣質(zhì)指數(shù)為優(yōu)時(shí)出游,求該家庭外出郊游的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知$cosα=-\frac{{\sqrt{5}}}{5}$,$α∈(π,\frac{3π}{2})$.
(Ⅰ)求sinα的值;
(Ⅱ)求$\frac{{sin(π+α)+2sin(\frac{3π}{2}+α)}}{cos(3π-α)+1}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在△ABC中,a,b,c分別是A,B,C的對(duì)邊,且A=$\frac{2π}{3}$,b+2c=8,則當(dāng)△ABC的面積取得最大值時(shí),a的值為2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)集合M={-1,1},N=$\left\{{x\left|{\frac{1}{x}<2}\right.}\right\}$,則下列結(jié)論正確的是(  )
A.N⊆MB.M⊆NC.M∩N=∅D.M∪N=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)A1(-2$\sqrt{2}$,0),A2(2$\sqrt{2}$,0),P是動(dòng)點(diǎn),且直線A1P與A2P的斜率之積等于-$\frac{1}{2}$.
(1)求動(dòng)點(diǎn)P的軌跡E的方程;
(2)設(shè)軌跡E的左右焦點(diǎn)分別為F1,F(xiàn)2,作兩條互相垂直的直線MF1和MF2與軌跡E的交點(diǎn)分別為A,B和C,D,求證:$\frac{1}{|AB|}$+$\frac{1}{|CD|}$恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知F1、F2是橢圓的兩個(gè)焦點(diǎn),若存在滿足$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=0的點(diǎn)M在橢圓外部,則橢圓離心率的取值范圍是( 。
A.(0,1)B.($\frac{1}{2}$,1)C.($\frac{\sqrt{2}}{2}$,1)D.[$\frac{\sqrt{2}}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$,且θ為第四象限角,則tanθ的值-$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案