【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)若對(duì)于任意,都有,求實(shí)數(shù)的取值范圍.
【答案】(1)(2)的單調(diào)遞增區(qū)間是;的單調(diào)遞減區(qū)間是(3).
【解析】
(1)先求得導(dǎo)函數(shù),由導(dǎo)數(shù)的幾何意義求得切線的斜率,再求得切點(diǎn)坐標(biāo),即可由點(diǎn)斜式得切線方程;
(2)求得導(dǎo)函數(shù),并令求得極值點(diǎn),結(jié)合導(dǎo)函數(shù)的符號(hào)即可判斷函數(shù)單調(diào)區(qū)間;
(3)將不等式變形,并分離參數(shù)后構(gòu)造函數(shù),求得并令求得極值點(diǎn),結(jié)合極值點(diǎn)左右兩側(cè)的單調(diào)性和端點(diǎn)求得最值,即可確定的取值范圍.
(1)因?yàn)楹瘮?shù),
所以,.
又因?yàn)?/span>,則切點(diǎn)坐標(biāo)為,
所以曲線在點(diǎn)處的切線方程為.
(2)函數(shù)定義域?yàn)?/span>,
由(1)可知,.
令解得.
與在區(qū)間上的情況如下:
- | 0 | + | |
↘ | 極小值 | ↗ |
所以,的單調(diào)遞增區(qū)間是;
的單調(diào)遞減區(qū)間是.
(3)當(dāng)時(shí),“”等價(jià)于“”.
令,,,.
令解得,
當(dāng)時(shí),,所以在區(qū)間單調(diào)遞減.
當(dāng)時(shí),,所以在區(qū)間單調(diào)遞增.
而,.
所以在區(qū)間上的最大值為.
所以當(dāng)時(shí),對(duì)于任意,都有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機(jī)體或者對(duì)機(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或開(kāi)始呈現(xiàn)該疾病對(duì)應(yīng)的相關(guān)癥狀時(shí)止的這一階段稱為潛伏期. 一研究團(tuán)隊(duì)統(tǒng)計(jì)了某地區(qū)1000名患者的相關(guān)信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數(shù) |
(1)求這1000名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過(guò)6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表. 請(qǐng)將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為潛伏期與患者年齡有關(guān);
潛伏期天 | 潛伏期天 | 總計(jì) | |
50歲以上(含50歲) | |||
50歲以下 | 55 | ||
總計(jì) | 200 |
(3)以這1000名患者的潛伏期超過(guò)6天的頻率,代替該地區(qū)1名患者潛伏期超過(guò)6天發(fā)生的概率,每名患者的潛伏期是否超過(guò)6天相互獨(dú)立. 為了深入研究,該研究團(tuán)隊(duì)隨機(jī)調(diào)查了名患者,其中潛伏期超過(guò)6天的人數(shù)最有可能(即概率最大)是多少?
附:
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,.已知分別是的中點(diǎn).將沿折起,使到的位置且二面角的大小是60°,連接,如圖:
(1)證明:平面平面
(2)求平面與平面所成二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十九世紀(jì)末,法國(guó)學(xué)者貝特朗在研究幾何概型時(shí)提出了“貝特朗悖論”,即“在一個(gè)圓內(nèi)任意選一條弦,這條弦的弦長(zhǎng)長(zhǎng)于這個(gè)圓的內(nèi)接等邊三角形邊長(zhǎng)的概率是多少?”貝特朗用“隨機(jī)半徑”、“隨機(jī)端點(diǎn)”、“隨機(jī)中點(diǎn)”三個(gè)合理的求解方法,但結(jié)果都不相同.該悖論的矛頭直擊概率概念本身,強(qiáng)烈地刺激了概率論基礎(chǔ)的嚴(yán)格化.已知“隨機(jī)端點(diǎn)”的方法如下:設(shè)A為圓O上一個(gè)定點(diǎn),在圓周上隨機(jī)取一點(diǎn)B,連接AB,所得弦長(zhǎng)AB大于圓O的內(nèi)接等邊三角形邊長(zhǎng)的概率.則由“隨機(jī)端點(diǎn)”求法所求得的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
Ⅰ若函數(shù)的最大值為3,求實(shí)數(shù)的值;
Ⅱ若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
Ⅲ若,是函數(shù)的兩個(gè)零點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的短軸長(zhǎng)為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線平行于直線,且與橢圓交于兩個(gè)不同的點(diǎn),若為鈍角,求直線在軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,沿中位線DE折起后,點(diǎn)A對(duì)應(yīng)的位置為點(diǎn)P,.
(1)求證:平面平面DBCE;
(2)求證:平面平面PCE;
(3)求直線BP與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】疫情期間,某小區(qū)超市平面圖如圖所示,由矩形與扇形組成,米,米,,經(jīng)營(yíng)者決定在點(diǎn)處安裝一個(gè)監(jiān)控?cái)z像頭,攝像頭的監(jiān)控視角,攝像頭監(jiān)控區(qū)域?yàn)閳D中陰影部分,要求點(diǎn)在弧上,點(diǎn)在線段上.設(shè).
(1)求該監(jiān)控?cái)z像頭所能監(jiān)控到的區(qū)域面積關(guān)于的函數(shù)關(guān)系式,并求出的取值范圍;
(2)求監(jiān)控區(qū)域面積最大時(shí),角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a是實(shí)數(shù),關(guān)于z的方程(z2-2z+5)(z2+2az+1)=0有4個(gè)互不相等的根,它們?cè)趶?fù)平面上對(duì)應(yīng)的4個(gè)點(diǎn)共圓,則實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com