分析 利用拋物線得焦點弦公式,表示∴|PQ|=λ+$\frac{1}{λ}$+2,λ∈[$\frac{1}{2},2]$,再求其值域即可.
解答 解:(1)當(dāng)λ=1時,PQ為拋物線得通經(jīng)2p,|PQ|=4PQ=4;…(4分)
(2)由$\left\{\begin{array}{l}{{y}^{2}=4x}\\{x=ty+1}\end{array}\right.$得y2-4ty-4=0'
y1+y2=4t…①y1y2=-4…②
∵$\overrightarrow{PF}=λ\overrightarrow{PQ}$⇒y1=-λy2…③
由①②③消去y1,y2得4t2=λ+$\frac{1}{λ}$-2…④
∵直線L:x=ty+1過拋物線y2=4x的焦點為F(1,0),
∴|PQ|=x1+x2+2=t(y1+y2)+4=4t2+4…⑤.
把④代入⑤得∴|PQ|=λ+$\frac{1}{λ}$+2,λ∈[$\frac{1}{2},2]$
∴∴|PQ|$∈[4,\frac{9}{2}]$.
點評 本題考查了拋物線的焦點弦問題,焦點弦公式是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 18 | B. | 12 | C. | 7 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com