分析 (1)由條件利用任意角的三角函數(shù)的定義,求得sinα 和cosα的值,可得2sinα+cosα的值.
(2)由條件利用同角三角函數(shù)的基本關(guān)系求得要求式子的值.
解答 解:(1)∵已知角α的終邊過點P(4,-3),∴r=|OP|=5,sinα=$\frac{-3}{5}$,cosα=$\frac{4}{5}$,
∴2sinα+cosα=-$\frac{6}{5}$+$\frac{4}{5}$=-$\frac{2}{5}$.
(2)∵已知tanα=3,∴①$\frac{4sinα-cosα}{3sinα+5cosα}$=$\frac{4tanα-1}{3tanα+5}$=$\frac{11}{14}$,
②$\frac{{{{sin}^2}α-sin2α}}{{4{{cos}^2}α-3{{sin}^2}α}}$=$\frac{{tan}^{2}α-2tanα}{4-{3tan}^{2}α}$=$\frac{9-6}{4-27}$=-$\frac{3}{23}$.
點評 本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 864種 | B. | 432種 | C. | 288種 | D. | 144種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | ¬p∧q | C. | p∧¬q | D. | ¬p∧¬q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
成績分組 | [85,95) | [95,105) | [105,115) | [115,125) | [125,135) | [135,145) |
頻數(shù) | 10 | 10 | 12 | 8 | 6 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com