【題目】已知,圓C:x2+y2﹣8y+12=0,直線l:ax+y+2a=0.
(1)當(dāng)a為何值時(shí),直線l與圓C相切;
(2)當(dāng)直線l與圓C相交于A、B兩點(diǎn),且AB=2 時(shí),求直線l的方程.
【答案】
(1)解:將圓C的方程x2+y2﹣8y+12=0配方得標(biāo)準(zhǔn)方程為x2+(y﹣4)2=4,
則此圓的圓心為(0,4),半徑為2.若直線l與圓C相切,則有 .解得 .
(2)解:聯(lián)立方程 并消去y,
得(a2+1)x2+4(a2+2a)x+4(a2+4a+3)=0.
設(shè)此方程的兩根分別為x1、x2,
所以x1+x2=﹣ ,x1x2=
則AB= = =2
兩邊平方并代入解得:a=﹣7或a=﹣1,
∴直線l的方程是7x﹣y+14=0和x﹣y+2=0.
另解:圓心到直線的距離為d= ,
AB=2 =2 ,可得d= ,
解方程可得a=﹣7或a=﹣1,
∴直線l的方程是7x﹣y+14=0和x﹣y+2=0.
【解析】把圓的方程化為標(biāo)準(zhǔn)方程后,找出圓心坐標(biāo)與圓的半徑r,(1)當(dāng)直線l與圓相切時(shí),圓心到直線的距離d等于圓的半徑r,利用點(diǎn)到直線的距離公式表示出圓心到直線l的距離d,讓d等于圓的半徑r,列出關(guān)于a的方程,求出方程的解即可得到a的值;(2)聯(lián)立圓C和直線l的方程,消去y后,得到關(guān)于x的一元二次方程,然后利用韋達(dá)定理表示出AB的長(zhǎng)度,列出關(guān)于a的方程,求出方程的解即可得到a的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
設(shè)函數(shù)
(Ⅰ)若是函數(shù)的極值點(diǎn),1和是的兩個(gè)不同零點(diǎn),且
且,求的值;
(Ⅱ)若對(duì)任意, 都存在( 為自然對(duì)數(shù)的底數(shù)),使得
成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了了解全校學(xué)生的上網(wǎng)情況,在全校采取隨機(jī)抽樣的方法抽取了名學(xué)生(其中男女生人數(shù)恰好各占一半)進(jìn)行問(wèn)卷調(diào)查,并進(jìn)行了統(tǒng)計(jì),按男女分為兩組,再將每組學(xué)生的月上網(wǎng)次數(shù)分為組: ,得到如圖所示的頻率分布直方圖:
(1)寫出的值;
(2)求抽取的名學(xué)生中月上網(wǎng)次數(shù)不少于次的學(xué)生的人數(shù);
(3)在抽取的名學(xué)生中,從月上網(wǎng)次數(shù)少于次的學(xué)生中隨機(jī)抽取人,求至少抽取到名男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ=2.
(1)若點(diǎn)M的直角坐標(biāo)為(2, ),直線l與曲線C1交于A、B兩點(diǎn),求|MA|+|MB|的值.
(2)設(shè)曲線C1經(jīng)過(guò)伸縮變換 得到曲線C2 , 求曲線C2的內(nèi)接矩形周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點(diǎn).求證: (Ⅰ)PA∥平面BDE;
(Ⅱ)平面PAC⊥平面BDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若a,b∈[﹣1,1],a+b≠0時(shí),有 >0成立. (Ⅰ)判斷f(x)在[﹣1,1]上的單調(diào)性,并證明;
(Ⅱ)解不等式:f(2x﹣1)<f(1﹣3x);
(Ⅲ)若f(x)≤m2﹣2am+1對(duì)所有的a∈[﹣1,1]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知某幾何體的三視圖如下(單位:cm).
(1)畫出這個(gè)幾何體的直觀圖(不要求寫畫法);
(2)求這個(gè)幾何體的表面積及體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校50名學(xué)生參加2015年全國(guó)數(shù)學(xué)聯(lián)賽初賽,成績(jī)?nèi)拷橛?/span>90分到140分之間.將成績(jī)結(jié)果按如下方式分成五組:第一組,第二組,…,第五組.按上述分組方法得到的頻率分布直方圖如圖所示.
(1)若成績(jī)大于或等于100分且小于120分認(rèn)為是良好的,求該校參賽學(xué)生在這次數(shù)學(xué)聯(lián)賽中成績(jī)良好的人數(shù);
(2)若從第一、五組中共隨機(jī)取出兩個(gè)成績(jī),記為取得第一組成績(jī)的個(gè)數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|3x+2|
(1)解不等式f(x)<4-|x-1|
(2)已知m+n=1(m,n>0),若恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com