如圖,在正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,P是DD1的中點(diǎn),設(shè)Q是CC1上的點(diǎn),問(wèn):當(dāng)點(diǎn)Q在什么位置時(shí),平面D1BQ平面PAO?
當(dāng)Q為CC1的中點(diǎn)時(shí),平面D1BQ平面PAO.
∵Q為CC1的中點(diǎn),P為DD1的中點(diǎn),∴QBPA.
連接DB.∵P、O分別為DD1、DB的中點(diǎn),
∴D1BPO.又D1B?平面PAO,QB?平面PAO,∴D1B面PAO.
再由QB面PAO,且 D1B∩QB=B,∴平面D1BQ平面PAO.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,過(guò)A作AF⊥SB,垂足為F,點(diǎn)E,G分別是棱SA,SC的中點(diǎn).求證:
(1)平面EFG平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D、E分別是AC、AB上的點(diǎn),且DEBC,將△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如圖2.
(1)求證:BC平面A1DE;
(2)求證:BC⊥平面A1DC;
(3)當(dāng)D點(diǎn)在何處時(shí),A1B的長(zhǎng)度最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=
2
,E、F、G分別A1B1、B1C1、BB1的中點(diǎn).
(1)求直線D1B與平面ABCD所成角的大。
(2)求證:AC平面EGF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,E,F(xiàn)分別是A1B,A1C的中點(diǎn),點(diǎn)D在B1C1上,A1D⊥B1C.求證:
(1)EF平面ABC;
(2)平面A1FD⊥平面BB1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正三棱柱ABC-A1B1C1中,M、N分別為A1B1、AB的中點(diǎn).
①求證:平面A1NC平面BMC1;
②若AB=AA1,求BM與AC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果兩個(gè)平面分別平行于第三個(gè)平面,那么這兩個(gè)平面的位置關(guān)系( 。
A.平行B.相交C.異面D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在三棱柱ABC-A1B1C1中,△ABC為等邊三角形,側(cè)棱AA1⊥平面ABC,AB=2,AA1=2
3
,D、E分別為AA1、BC1的中點(diǎn).
(Ⅰ)求證:DE⊥平面BB1C1C;
(Ⅱ)求三棱錐C-BC1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在底面為菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,點(diǎn)E在PD上,且PE:ED=2:1.
(1)求證:PA⊥平面ABCD;
(2)求面EAC與面DAC所成的二面角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案