正三棱柱ABC-A1B1C1中,M、N分別為A1B1、AB的中點(diǎn).
①求證:平面A1NC平面BMC1
②若AB=AA1,求BM與AC所成角的余弦值.
①證明:在正三棱柱ABC-A1B1C1中,M、N分別為A1B1、AB的中點(diǎn),
所以A1NBM,
因?yàn)锽M?平面BMC1,A1N?平面BMC1,
所以A1N平面BMC1
因?yàn)镸、N分別為A1B1、AB的中點(diǎn),
所以C1MCN,
因?yàn)镃1M?平面BMC1,CN?平面BMC1,
所以CN平面BMC1
又因?yàn)镃N∩A1N=N,并且CN?平面A1NC,A1N?平面A1NC
所以平面A1NC平面BMC1
②由 ①可得A1NBM,
又因?yàn)锳CA1C1,
所以BM與AC所成角等于A1C1與A1N所成的角,
即∠NA1C1為所求或者與其互補(bǔ).
連接C1N,在△NA1C1中,設(shè)AB=AA1=2,所以A1N=
5
,A1C1=2,NC1=
7

所以根據(jù)余弦定理可得:cosNA1C1=
5
10

所以BM與AC所成角的余弦值
5
10
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD,E是棱PA的中點(diǎn).
(1)求證:PC平面EBD;
(2)求三棱錐P-EBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面是邊長(zhǎng)為1的正方形,側(cè)棱PA⊥底面ABCD,且PA=2,E是側(cè)棱PA上的動(dòng)點(diǎn).
(I)求四棱錐P-ABCD的體積;
(Ⅱ)如果E是PA的中點(diǎn),求證:PC平面BDE;
(Ⅲ)探究:不論點(diǎn)E在側(cè)棱PA的任何位置,BD⊥CE是否都成立?若成立,證明你的結(jié)論;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列各圖中,A、B為正方體的兩個(gè)頂點(diǎn),M、N、P分別為其所在棱的中點(diǎn),能得出AB平面MNP的圖形的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,P是DD1的中點(diǎn),設(shè)Q是CC1上的點(diǎn),問:當(dāng)點(diǎn)Q在什么位置時(shí),平面D1BQ平面PAO?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,E是DD1的中點(diǎn).
(1)求證:BD1平面ACE
(2)過直線BD1是否存在與平面ACE平行的平面,若存在,請(qǐng)作出這個(gè)平面與長(zhǎng)方體ABCD-A1B1C1D1的交線(請(qǐng)?jiān)诖痤}卡上用黑色碳素筆和直尺作圖),并證明這兩個(gè)平面平行;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在多面體ABCDE中,AE⊥平面ABC,BDAE,且AC=AB=BC=BD=2,AE=1,F(xiàn)在CD上(不含C,D兩點(diǎn))
(1)求多面體ABCDE的體積;
(2)若F為CD中點(diǎn),求證:EF⊥面BCD;
(3)當(dāng)
DF
FC
的值為多少時(shí),能使AC平面EFB,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,PA⊥平面ABCD,F(xiàn)是BC的中點(diǎn).
(1)求證:DA⊥平面PAC;
(2)試在線段PD上確定一點(diǎn)G,使CG平面PAF,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面為正方形,側(cè)棱PA⊥平面ABCD,且PA=AD=2,E、F、H分別是線段PA、PD、AB的中點(diǎn).
(1)求證:PD⊥平面AHF;
(2)求證:平面PBC平面EFH.

查看答案和解析>>

同步練習(xí)冊(cè)答案