給出以下命題:
①如果函數(shù)f(x)在區(qū)間(a,b)內(nèi)可導(dǎo),那么導(dǎo)數(shù)等于零的點(diǎn)一定是極值點(diǎn);
②若復(fù)數(shù)z1,z2滿足z1+z2,z1•z2都是實(shí)數(shù),則z1,z2互為共軛復(fù)數(shù);
③連續(xù)函數(shù)f(x)的圖象與直線y=0,x=b(a<b)所圍成的面積是
b
a
f(x)dx;
④反證法就是通過證明逆命題來證明原命題.
其中正確命題的個(gè)數(shù)是( 。
A、3B、2C、1D、0
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:應(yīng)用題
分析:分別對(duì)①②③④進(jìn)行判斷,從而得到答案.
解答: 解:①錯(cuò)誤,如y=x3在(a,b)內(nèi)可導(dǎo),
f′(x)=3x2=0,x=0,但x=0不是極值點(diǎn),
故①錯(cuò)誤;
②設(shè)z1=a+bi,z2=c+di,由z1+z2=a+c+(b+d)i是實(shí)數(shù),得b=-d,
由z1•z2=(a+bi)(c+di)=ac+bd+(ad+bc)i是實(shí)數(shù),
得ad+bc=0,即ad=bc,
∵b=-d,∴a=c,
∴z1,z2互為共軛復(fù)數(shù),
故②正確;
③錯(cuò)誤,如圖示:
,
則面積 應(yīng)為S=
0
a
(-f(x))dx+
b
0
f(x)dx;
④錯(cuò)誤,反證法是假設(shè)原命題結(jié)論正確,得出矛盾,而非證明逆命題;
故選:C.
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的問題,考查了復(fù)數(shù)問題,定積分以及反證法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

空間中點(diǎn)M(-1,-2,3)關(guān)于x軸的對(duì)稱點(diǎn)坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)=z=i3(1+i)(i為虛數(shù)單位)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}的各項(xiàng)都是正數(shù),且a8a9+a4a13=210,則log2a1+log2a2+…+log2a16=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=-x+log2
1-x
1+x

(1)求f(x)的定義域;
(2)求f(-
1
2012
)+f(
1
2012
);
(3)當(dāng)x∈(-a,a](其中a∈(-1,1)且a為常數(shù))時(shí)f(x)是否存在最小值?如果存在,求出最小值,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知y=kx(k≠0)與橢圓:
x2
2
+y2=1交于P,Q兩點(diǎn),過點(diǎn)P的直線PA與PQ垂直,且與橢圓C的另一個(gè)交點(diǎn)為4.
(1)求直線PA與AQ的斜率之積;
(2)若直線AQ與x軸交于點(diǎn)B,求證:PB與x軸垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)滿足下列條件:
(1)對(duì)?x∈R,函數(shù)y=f(x)的導(dǎo)數(shù)f′(x)<0恒成立;
(2)函數(shù)y=f(x+2)的圖象關(guān)于點(diǎn)(-2,0)對(duì)稱.
(3)對(duì)?x,y∈R,有f(x2-8x+21)+f(y2-6y)>0恒成立,則當(dāng)0<x<4時(shí),x2+y2的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,過拋物線x2=2py (p>0)焦點(diǎn)F的直線l交拋物線于點(diǎn)A、B,交準(zhǔn)線于點(diǎn)C,若|AC|=2|AF|,且|BF|=8,則此拋物線的方程為( 。
A、x2=4y
B、x2=8 y
C、x2=2y
D、x2=16y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
ax2+
2
3
a(a>0)
(1)試求計(jì)論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x≥0時(shí),f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案