如圖,過拋物線x2=2py (p>0)焦點F的直線l交拋物線于點A、B,交準線于點C,若|AC|=2|AF|,且|BF|=8,則此拋物線的方程為( 。
A、x2=4y
B、x2=8 y
C、x2=2y
D、x2=16y
考點:拋物線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由題意求得直線AB的斜率,寫出直線方程的點斜式,和拋物線聯(lián)立后求得B的縱坐標,由拋物線的焦點弦公式結合|BF|=8求得2p,則拋物線方程可求.
解答: 解:如圖,

由|AC|=2|AF|,得∠ACM=30°,
即直線l的傾斜角為30°,斜率為
3
3

∴AB方程為y=
3
3
x+
p
2

聯(lián)立
y=
3
3
x+
p
2
x2=2py
,得12y2-20py+3p2=0.
解得:y1=
p
6
,y2=
3p
2

由圖可知:|BF|=|BN|=
3p
2
+
p
2
=2p
,
∴2p=8.
則拋物線的方程為x2=8y.
故選:B.
點評:本題考查了拋物線的簡單幾何性質(zhì),考查了拋物線的焦點弦公式,體現(xiàn)了數(shù)學轉(zhuǎn)化思想方法,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設全集為R,A={x|x(x-2)<0},B={x|y=ln(1-x)},則A∩(∁RB)=( 。
A、(-2,1)
B、[1,2)
C、(-2,1]
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出以下命題:
①如果函數(shù)f(x)在區(qū)間(a,b)內(nèi)可導,那么導數(shù)等于零的點一定是極值點;
②若復數(shù)z1,z2滿足z1+z2,z1•z2都是實數(shù),則z1,z2互為共軛復數(shù);
③連續(xù)函數(shù)f(x)的圖象與直線y=0,x=b(a<b)所圍成的面積是
b
a
f(x)dx;
④反證法就是通過證明逆命題來證明原命題.
其中正確命題的個數(shù)是( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
OA
|=1,|
OB
|=
3
,且
AO
OB
,設
OC
=m
OA
+n
OB

(1)若C點滿足
AC
=t
CB
,求m+n的值;
(2)若C滿足∠AOC=30°,求
m
n
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P為拋物線y2=4x上的動點,點P在y軸上的射影是M,點A的坐標是(6,5),則|PA|+|PM|的最小值是( 。
A、8
B、7
C、5
2
D、5
2
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對邊,且(2a+b)cosC+ccosB=0.
(2)求∠C;
(2)若a、b、c成等差數(shù)列,b=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+(a-1)x+a為偶函數(shù).
(1)求a的值;
(2)設函數(shù),g(x)=
f(x)
x
,當x∈[1,+∞]時,不等式g(x)+f(m)+2m≥5恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1的焦點為F(-c,0),F(xiàn)′(c,0),c>0,過F且平行于雙曲線漸近線的直線與拋物線y2=4cx交于點P,若P在以FF′為直徑的圓上,則該雙曲線的離心率平方為( 。
A、
3+
5
2
B、
5
C、
5
-1
2
D、
1+
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+ϕ),(其中x∈R,A>0,ω>0,|ϕ|<
π
2
)的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)當x∈[
π
6
,
3
]時,f(x)的最值及其對應x的值;
(3)把函數(shù)y=f(x)圖象向左平移
π
3
個單位,得到函數(shù)y=g(x)圖象,請寫出g(x)表達式并求出g(x)圖象的對稱軸和對稱中心.

查看答案和解析>>

同步練習冊答案