A(x1,y1),B(x2,y2)是橢圓C=1(a>b>0)上兩點,已知mn,若m·n=0且橢圓的離心率e,短軸長為2,O為坐標原點.
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
(1)x2=1(2)是
(1)∵2b=2,∴b=1,∴e.
a=2,c.故橢圓的方程為x2=1.
(2)①當直線AB斜率不存在時,即x1x2y1=-y2,
m·n=0,得=0⇒.
A(x1,y1)在橢圓上,所以=1,∴|x1|=,|y1|=,S|x1||y1y2|=1=|x1|·2|y1|=1.
②當直線AB斜率存在時,設AB的方程為ykxb(其中b≠0),代入x2=1,得
(k2+4)x2+2kbxb2-4=0.
Δ=(2kb)2-4(k2+4)(b2-4)=16(k2b2+4)>0,x1x2,x1x2,由已知m·n=0得x1x2=0?x1x2=0,代入整理得2b2k2=4,代入Δ中可得b2>0滿足題意,
S|AB|=|b| =1.所以△ABC的面積為定值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓的圓心在坐標原點O,且恰好與直線相切.
(1)求圓的標準方程;
(2)設點A為圓上一動點,AN軸于N,若動點Q滿足(其中m為非零常數(shù)),試求動點的軌跡方程.
(3)在(2)的結論下,當時,得到動點Q的軌跡曲線C,與垂直的直線與曲線C交于 B、D兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的對稱軸為坐標軸,焦點是,又點在橢圓上.
(1)求橢圓的方程;
(2)已知直線的斜率為,若直線與橢圓交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面五邊形關于直線對稱(如圖(1)),,,將此圖形沿折疊成直二面角,連接得到幾何體(如圖(2))

(1)證明:平面;
(2)求平面與平面的所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,過點A(-2,-1)橢圓C=1(ab>0)的左焦點為F,短軸端點為B1、B2=2b2.
(1)求a、b的值;
(2)過點A的直線l與橢圓C的另一交點為Q,與y軸的交點為R.過原點O且平行于l的直線與橢圓的一個交點為P.若AQ·AR=3OP2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓,過橢圓上一點作傾斜角互補的兩條直線、,分別交橢圓、兩點.則直線的斜率為          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設雙曲線的虛軸長為2,焦距為,則雙曲線的漸近線方程為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是橢圓的兩個焦點,過的直線交橢圓于兩點,若的周長為,則橢圓方程為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線是平面內(nèi)與定點和定直線的距離的積等于的點的軌跡.給出下列四個結論:
①曲線過坐標原點;
②曲線關于軸對稱;
③曲線軸有個交點;
④若點在曲線上,則的最小值為.
其中,所有正確結論的序號是___________.

查看答案和解析>>

同步練習冊答案