已知橢圓,過(guò)橢圓上一點(diǎn)作傾斜角互補(bǔ)的兩條直線,分別交橢圓、兩點(diǎn).則直線的斜率為          .

試題分析:這題有一定的難度,考查的直線與圓錐曲線相交問(wèn)題,考查同學(xué)們的計(jì)算打理能力,當(dāng)然在解題時(shí)注意過(guò)程的簡(jiǎn)捷性,設(shè),同時(shí)設(shè)的方程為,代入橢圓方程化簡(jiǎn)得:,顯然是這個(gè)方程的兩解,因此,用代替中的,得.所以
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)為F(0,),且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比是∶1.
 
(1)求橢圓C的方程;
(2)若橢圓C上在第一象限的一點(diǎn)P的橫坐標(biāo)為1,過(guò)點(diǎn)P作傾斜角互補(bǔ)的兩條不同的直線PAPB分別交橢圓C于另外兩點(diǎn)A,B,求證:直線AB的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓的離心率是,分別是橢圓的左、右兩個(gè)頂點(diǎn),點(diǎn)是橢圓的右焦點(diǎn)。點(diǎn)軸上位于右側(cè)的一點(diǎn),且滿(mǎn)足

(1)求橢圓的方程以及點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)軸的垂線,再作直線與橢圓有且僅有一個(gè)公共點(diǎn),直線交直線于點(diǎn).求證:以線段為直徑的圓恒過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的離心率為,軸被曲線截得的線段長(zhǎng)等于的短軸長(zhǎng)。軸的交點(diǎn)為,過(guò)坐標(biāo)原點(diǎn)的直線相交于點(diǎn),直線分別與相交于點(diǎn)。

(1)求、的方程;
(2)求證:。
(3)記的面積分別為,若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓E:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,焦距為2,過(guò)F1作垂直于橢圓長(zhǎng)軸的弦PQ,|PQ|為3.
(1)求橢圓E的方程;
(2)若過(guò)F1的直線l交橢圓于A,B兩點(diǎn),判斷是否存在直線l使得∠AF2B為鈍角,若存在,求出l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)A(x1,y1),B(x2,y2)是橢圓C=1(a>b>0)上兩點(diǎn),已知mn,若m·n=0且橢圓的離心率e,短軸長(zhǎng)為2,O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)試問(wèn)△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

,則方程表示的曲線不可能是(   )
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線交雙曲線兩點(diǎn),為雙曲線上異于的任意一點(diǎn),則直線的斜率之積為(       )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓內(nèi)有一點(diǎn),過(guò)點(diǎn)的弦恰好以為中點(diǎn),那么這條弦所在直線的斜率為     ,直線方程為      

查看答案和解析>>

同步練習(xí)冊(cè)答案