已知函數(shù)f(x)=|x2+2bx-c|(x∈R),則( 。
A、f(x)必是偶函數(shù)
B、當(dāng)f(-1)=f(3)時,f(x)的圖象關(guān)于直線x=1對稱
C、若b2+c≤0,則f(x)在區(qū)間[-b,+∞)上是增函數(shù)
D、f(x)有最大值|b2+c|
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)二次函數(shù)的性質(zhì)得出b2+c≤0,時,g(x)=x2+2bx-c≥0(x∈R),即得出函數(shù)f(x)=x2+2bx-c(x∈R),很容易判斷答案.
解答: 解:∵b2+c≤0,

∴函數(shù)f(x)=|x2+2bx-c|(x∈R),
即函數(shù)f(x)=x2+2bx-c(x∈R),
對稱軸為x=-b,
∴根據(jù)二次函數(shù)的性質(zhì)得出:f(x)在區(qū)間[-b,+∞)上是增函數(shù),
故選:C
點評:本題考查了二次函數(shù)的性質(zhì),運用判斷有關(guān)的問題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知有公共焦點的橢圓與雙曲線的中心都為原點,焦點在x軸上,左右焦點分別F1F2,且它們在第一象限的交點P,△PF1F2是PF1為底邊的等腰三角形,|PF1|=12,橢圓的離心率的取值范圍為(
2
5
4
9
),則雙曲線離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商店儲存的50個燈泡中,甲廠生產(chǎn)的燈泡占60%,乙廠生產(chǎn)的燈泡占40%,甲廠生產(chǎn)的燈泡的一等品率是90%,乙廠生產(chǎn)的燈泡的一等品率是80%.
(1)若從這50個燈泡中隨機(jī)抽取出一個燈泡(每個燈泡被取出的機(jī)會均等),則它是甲廠生產(chǎn)的一等品的概率是多少?
(2)從這50個燈泡中隨機(jī)抽取出的一個燈泡是一等品,求它是甲廠生產(chǎn)的概率是多少?
(3)若從這50個燈泡中隨機(jī)抽取出兩個燈泡(每個燈泡被取出的機(jī)會均等),這兩個燈泡中是甲廠生產(chǎn)的一等品的個數(shù)記為ξ,求Eξ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在距A城50km的B地發(fā)現(xiàn)稀有金屬礦藏,現(xiàn)知由A至某方向有一條直鐵路AX,B到該鐵路的距離為30km,為在AB之間運送物資,擬在鐵路AX上的某點C處筑一直公路通到B地.已知單位重量貨物的鐵路運費與運輸距離成正比,比例系數(shù)為k1(k1為常數(shù)且k1>0);單位重量貨物的公路運費與運輸距離的平方成正比,比例系數(shù)為k2(k2為常數(shù)且k2>0).設(shè)單位重量貨物的總運費為y元,AC之間的距離為xkm.
(1)將y表示成x的函數(shù);
(2)若k1=20k2,則當(dāng)x為何值時,單位重量貨物的總運費最少.并求出最少運費.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某經(jīng)營者在一個袋子里放3種不同顏色的小球.每種顏色的球都是3個,然后讓玩的人從中一次性摸出5個球并規(guī)定如果摸出來的小球的顏色是“221”(即有2種顏色的球各為2個,另一種顏色的球為1個),則玩者要交錢5元;如果摸出來的顏色是“311”,則獎給玩者2元;如果摸出來的顏色是“320”則獎給玩者10元.
(1)求玩者要交錢的概率;
(2)求經(jīng)營者在一次游戲中獲利的期望(保留到0.01元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,其前n項和為,{bn}是等比數(shù)列,且a1=b1,a4+b4=27,S4-b4=10.
(Ⅰ)求數(shù)列{an}與{bn}的通項公式;
(Ⅱ)記Tn=a1b1+a2b2+…+anbn(n∈N*),若對于任意不小于2的正整數(shù)n,恒有2n+1×λ×(9n2-21n+16)>Tn-8,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將1米長的一根鐵絲圍成一個矩形,問該矩形的長為多少米時,矩形的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=sin(2x-
π
6
)-1,|f(x)-m|<1在x∈[-
π
4
,
π
6
]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
3
)+cos(2x-
π
6
).
(1)將函數(shù)f(x)解析式化為f(x)=Asin(ωx+φ)(A>0,ω>0,-
π
2
<φ<
π
2
)的形式,并指出它的最小正周期.
(2)求此函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案