【題目】體溫是人體健康狀況的直接反應(yīng),一般認(rèn)為成年人腋下溫度(單位:)平均在之間即為正常體溫,超過即為發(fā)熱.發(fā)熱狀態(tài)下,不同體溫可分成以下三種發(fā)熱類型:低熱:;高熱:;超高熱(有生命危險(xiǎn)):.

某位患者因患肺炎發(fā)熱,于12日至26日住院治療. 醫(yī)生根據(jù)病情變化,從14日開始,以3天為一個(gè)療程,分別用三種不同的抗生素為該患者進(jìn)行消炎退熱. 住院期間,患者每天上午8:00服藥,護(hù)士每天下午16:00為患者測量腋下體溫記錄如下:

1)請你計(jì)算住院期間該患者體溫不低于的各天體溫平均值;

2)在日期間,醫(yī)生會(huì)隨機(jī)選取天在測量體溫的同時(shí)為該患者進(jìn)行某一特殊項(xiàng)目項(xiàng)目的檢查,記高熱體溫下做項(xiàng)目檢查的天數(shù),試求的分布列與數(shù)學(xué)期望;

3)抗生素治療一般在服藥后2-8個(gè)小時(shí)就能出現(xiàn)血液濃度的高峰,開始?xì)缂?xì)菌,達(dá)到消炎退熱效果.假設(shè)三種抗生素治療效果相互獨(dú)立,請依據(jù)表中數(shù)據(jù),判斷哪種抗生素治療效果最佳,并說明理由.

【答案】1;(2)分布列見解析,;(3)答案不唯一,給出合理理由即可.

【解析】

1)由題意利用平均數(shù)公式直接求解即可;

2)由題意利用超幾何分布的概率公式即可分別求出、,列出分布列后即可求期望;

3)可從各抗生素降溫總數(shù),使用抗生素時(shí)體溫平均值和方差,體溫穩(wěn)定下降的時(shí)間點(diǎn)和單日溫度下降最大值幾個(gè)角度去考慮,選出效果最佳的抗生素.

1)由表可知,該患者共6天的體溫不低于,記平均體溫為

.

所以,患者體溫不低于的各天體溫平均值為.

2的所有可能取值為,,.

,.

的分布列為:

P

所以.

3抗生素C治療效果最佳可使用理由:

抗生素B使用期間先連續(xù)兩天降溫1.0又回升0.1抗生素C使用期間持續(xù)降溫共計(jì)1.2,說明抗生素C降溫效果最好,故抗生素C治療效果最佳.

②抗生素B治療期間平均體溫39.03,方差約為;抗生素C平均體溫38,方差約為,抗生素C治療期間體溫離散程度大,說明存在某個(gè)時(shí)間節(jié)點(diǎn)降溫效果明顯,故抗生素C治療效果最佳.

抗生素B治療效果最佳可使用理由:

自使用抗生素B開始治療后,體溫才開始穩(wěn)定下降,且使用抗生素B治療當(dāng)天共降溫0.7,是單日降溫效果最好的一天,故抗生素B治療效果最佳.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù))

(1)若,求曲線C的直角坐標(biāo)方程以及直線l的極坐標(biāo)方程;

(2)設(shè)點(diǎn),曲線C與直線 交于A、B兩點(diǎn),求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學(xué)生.新生接待其實(shí)也是和社會(huì)溝通的一個(gè)平臺.校團(tuán)委、學(xué)生會(huì)從在校學(xué)生中隨機(jī)抽取了160名學(xué)生,對是否愿意投入到新生接待工作進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:

愿意

不愿意

男生

60

20

女士

40

40

1)根據(jù)上表說明,能否有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);

2)現(xiàn)從參與問卷調(diào)查且愿意參加新生接待工作的學(xué)生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機(jī)選取3人到火車站迎接新生,設(shè)選取的3人中女生人數(shù)為,寫出的分布列,并求

附:,其中

0.05

0.01

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在黨中央的正確指導(dǎo)下,通過全國人民的齊心協(xié)力,特別是全體一線醫(yī)護(hù)人員的奮力救治,二月份新冠肺炎疫情得到了控制.下圖是國家衛(wèi)健委給出的全國疫情通報(bào),甲、乙兩個(gè)省份從27日到213日一周的新增新冠肺炎確診人數(shù)的折線圖如下:

根據(jù)圖中甲、乙兩省的數(shù)字特征進(jìn)行比對,通過比較把你得到最重要的兩個(gè)結(jié)論寫在答案紙指定的空白處.

_________________________________________________.

_________________________________________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),有以下三個(gè)結(jié)論:

①函數(shù)恒有兩個(gè)零點(diǎn),且兩個(gè)零點(diǎn)之積為;

②函數(shù)的極值點(diǎn)不可能是;

③函數(shù)必有最小值.

其中正確結(jié)論的個(gè)數(shù)有(

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國剩余定理又稱孫子定理1852年,英國來華傳教士偉烈亞力將《孫子算經(jīng)》中物不知數(shù)問題的解法傳至歐洲.1874年,英國數(shù)學(xué)家馬西森指出此法符合1801年由高斯得到的關(guān)于同余式解法的一般性定理,因而西方稱之為中國剩余定理中國剩余定理講的是一個(gè)關(guān)于整除的問題,現(xiàn)有這樣一個(gè)整除問題:將120192019個(gè)數(shù)中,能被3除余2且被5整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列所有項(xiàng)中,中間項(xiàng)的值為( 。

A.992B.1022C.1007D.1037

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4 坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓,曲線的參數(shù)方程為為參數(shù)),并以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

(1)寫出的極坐標(biāo)方程,并將化為普通方程;

(2)若直線的極坐標(biāo)方程為相交于兩點(diǎn),

的面積(為圓的圓心).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的左右焦點(diǎn)分別為, ,若橢圓上一點(diǎn)滿足,且橢圓過點(diǎn),過點(diǎn)的直線與橢圓交于兩點(diǎn) .

(1)求橢圓的方程;

(2)過點(diǎn)軸的垂線,交橢圓,求證: , 三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校所有的1000名學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:

支付金額

支付方式

不大于2000

大于2000

僅使用A

27

3

僅使用B

24

1

(Ⅰ)估計(jì)該校學(xué)生中上個(gè)月A,B兩種支付方式都使用的人數(shù);

(Ⅱ)從樣本僅使用B的學(xué)生中隨機(jī)抽取1人,求該學(xué)生上個(gè)月支付金額大于2000元的概率;

(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用B的學(xué)生中隨機(jī)抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認(rèn)為樣本僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.

查看答案和解析>>

同步練習(xí)冊答案