【題目】已知函數(shù)f(x)=|x2﹣4|+a|x﹣2|,x∈[﹣3,3].若f(x)的最大值是0,則實數(shù)a的取值范圍是

【答案】(﹣∞,﹣5]
【解析】解:f(x)=|x2﹣4|+a|x﹣2|=|x﹣2|(|x+2|+a)≤0,
當x=2時,f(x)=0恒成立,
當x≠2時,
∴|x+2|+a≤0,
∴a≤﹣|x+2|,
設y=﹣|x+2|,x∈[﹣3,3].則其圖象為:

由圖象可知ymin=﹣5,
a≤﹣5,
故實數(shù)a的取值范圍是(﹣∞,﹣5],
所以答案是:(﹣∞,﹣5]
【考點精析】本題主要考查了函數(shù)的最值及其幾何意義的相關知識點,需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲挡拍苷_解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}為等比數(shù)列,
(1)若an>0,且a2a4+2a3a5a4a6=25,求a3a5.
(2)a1+a2+a3=7,a1a2a3=8,求an.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在下列各函數(shù)中,最小值等于2的函數(shù)是(
A.y=x+
B.y=cosx+ (0<x<
C.y=
D.y=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四面體ABCD中,ABC是以BC為斜邊的等腰直角三角形,BCD是邊長為2的正三角形.

(Ⅰ)當AD為多長時,?

(Ⅱ)當二面角BACD時,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學進行自主招生時,需要進行邏輯思維和閱讀表達兩項能力的測試.學校對參加測試的200名學生的邏輯思維成績、閱讀表達成績以及這兩項的總成績進行了排名.其中甲、乙、丙三位同學的排名情況如下圖所示:

得出下面四個結(jié)論:

甲同學的邏輯排名比乙同學的邏輯排名更靠前

②乙同學的邏輯思維成績排名比他的閱讀表達成績排名更靠前

③甲、乙、丙三位同學的邏輯思維成績排名中,甲同學更靠前

④甲同學的閱讀表達成績排名比他的邏輯思維成績排名更靠前

則所有正確結(jié)論的序號是_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市有一直角梯形綠地ABCD,其中∠ABC=∠BAD=90°,AD=DC=2km,BC=1km.現(xiàn)過邊界CD上的點E處鋪設一條直的灌溉水管EF,將綠地分成面積相等的兩部分.

(1)如圖①,若E為CD的中點,F(xiàn)在邊界AB上,求灌溉水管EF的長度;
(2)如圖②,若F在邊界AD上,求灌溉水管EF的最短長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校隨機調(diào)查80名學生,以研究學生愛好羽毛球運動與性別的關系,得到下面的列聯(lián)表:

(1)將此樣本的頻率視為總體的概率,隨機調(diào)查本校的3名學生,設這3人中愛好羽毛球運動的人數(shù)為,求的分布列和數(shù)學期望;

(2)根據(jù)表3中數(shù)據(jù),能否認為愛好羽毛球運動與性別有關?

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:度),以,,,分組的頻率分布直方圖如圖.

(1)求直方圖中的值;

(2)求月平均用電量的平均數(shù)、眾數(shù)和中位數(shù);

(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在的用戶中應抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形ACDE所在的平面與平面ABC垂直,MCEAD的交點,ACBC,AC=BC.

(1)求證:AM平面EBC;

(2)求直線AB與平面EBC所成角的大小,

(3)求二面角A-BE-C的大小.

查看答案和解析>>

同步練習冊答案