12.已知棱長為1的正方體ABCD-A1B1C1D1中,$\overrightarrow{AE}$=λ$\overrightarrow{AB}$,$\overrightarrow{{D_1}F}$=μ$\overrightarrow{{D_1}B}$,其中λ∈(0,1),μ∈(0,1),滿足EF∥平面AA1D1D,則當三棱錐A-EFB1的體積最大時,λ+μ的值為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.1

分析 連結AD1,則由線面平行的性質得EF∥AD1,于是$EF=\sqrt{2}(1-λ)$,AE=λ=μ.過A1作A1M⊥AD1,則A1M⊥平面ABD1,AB⊥EF.A1M=$\frac{A{A}_{1}•{A}_{1}{D}_{1}}{A{D}_{1}}$=$\frac{\sqrt{2}}{2}$.所以V${\;}_{A-EF{B}_{1}}$=V${\;}_{{B}_{1}-AEF}$=V${\;}_{{A}_{1}-AEF}$$\frac{1}{3}{S}_{△AEF}•{A}_{1}M$,使用基本不等式求出體積取得最大值時成立的條件,從而得到λ,μ的值.

解答 解:連結AD1,∵EF∥平面AA1D1D,EF?平面ABD1,平面ABD1∩平面AA1D1D=AD1
∴EF∥AD1,∴$\frac{EF}{A{D}_{1}}=\frac{BE}{AB}=1-λ$,∴$EF=\sqrt{2}(1-λ)$,AE=λ=μ.
過A1作A1M⊥AD1,
∵AB⊥平面AA1D1D,A1M?平面AA1D1D,AD1?平面AA1D1D,
∴AB⊥AD1,AB⊥A1M,
∴A1M⊥平面ABD1,AB⊥EF.
∵A1M=$\frac{A{A}_{1}•{A}_{1}{D}_{1}}{A{D}_{1}}$=$\frac{\sqrt{2}}{2}$.
∴V${\;}_{A-EF{B}_{1}}$=V${\;}_{{B}_{1}-AEF}$=V${\;}_{{A}_{1}-AEF}$=$\frac{1}{3}{S}_{△AEF}•{A}_{1}M$=$\frac{1}{3}×\frac{1}{2}×λ×\sqrt{2}(1-λ)×\frac{\sqrt{2}}{2}$=$\frac{1}{6}$λ(1-λ)≤$\frac{1}{6}×(\frac{λ+1-λ}{2})^{2}$=$\frac{1}{24}$.
當且僅當λ=1-λ即$λ=\frac{1}{2}$時取等號,∴λ+μ=1.
故選D

點評 本題考查了正方體的結構特征,線面平行的性質,棱錐的體積計算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.直線l過橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點F,且與此橢圓交于點A,B,若橢圓上存在一點M,使得$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{OM}$(O為坐標原點).
(1)求橢圓的離心率的取值范圍;
(2)橢圓上是否存在這樣一點M,使得四邊形OAMB為矩形,如果存在,試求出M的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,P是菱形ABCD所在平面外一點,∠BAD=60°,△PCD是等邊三角形,AB=2,PA=2$\sqrt{2}$,M是PC的中點,點G為線段DM上一點(端點除外),平面APG與BD交于點H.
(Ⅰ)求證:PA∥GH;
(Ⅱ)求證:平面PAC⊥平面BDM;
(Ⅲ)求幾何體M-BDC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知正項數(shù)列{an},a1=2,(an+1)an+2=1,a2=a6,則a11+a12=$\frac{1}{9}$+$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設f(x)=$\left\{\begin{array}{l}{log_2}x+1,(x>0)\\{2^x},(x≤0)\end{array}$,若f(a)=3,則a=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在長方體ABCD-A1B1C1D1中,AB=3,BC=2,AA1=1,點M,N,P分別是棱AB,BC,CC1的中點,則三棱錐C1-MNP的體積為$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知變量x,y滿足$\left\{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}\right.$,則u=log2(2x+y)的最大值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在△ABC中,a,b,c分別為角A,B,C的對邊,cos2A=cosA.
(Ⅰ)求角A;
(Ⅱ)當a=2$\sqrt{3}$,S△ABC=$\frac{{a}^{2}+^{2}-{c}^{2}}{4\sqrt{3}}$時,求邊c的值和△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若三棱柱ABC-A1B1C1的體積為V,P為CC1上的一點,${V}_{P-AB{B}_{1}{A}_{1}}$=$\frac{2V}{3}$.

查看答案和解析>>

同步練習冊答案