1.若三棱柱ABC-A1B1C1的體積為V,P為CC1上的一點(diǎn),${V}_{P-AB{B}_{1}{A}_{1}}$=$\frac{2V}{3}$.

分析 利用棱柱、棱錐的體積公式,即可得出結(jié)論.

解答 解:設(shè)棱柱ABC-A1B1C1的直截面為PDE,P到DE的距離為h,則V=$\frac{1}{2}$×DE×h×AA1
∴${V}_{P-AB{B}_{1}{A}_{1}}$=$\frac{1}{3}×$DE×AA1×h=$\frac{2V}{3}$.
故答案為:$\frac{2V}{3}$.

點(diǎn)評 本題考查棱柱、棱錐的體積的計(jì)算,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知棱長為1的正方體ABCD-A1B1C1D1中,$\overrightarrow{AE}$=λ$\overrightarrow{AB}$,$\overrightarrow{{D_1}F}$=μ$\overrightarrow{{D_1}B}$,其中λ∈(0,1),μ∈(0,1),滿足EF∥平面AA1D1D,則當(dāng)三棱錐A-EFB1的體積最大時,λ+μ的值為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)m、n∈R,且5m+12n=13,則m2+n2的最小值為( 。
A.$\frac{1}{169}$B.$\frac{1}{13}$C.1D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.命題“?x∈(-1,+∞),ln(x+1)<x”的否定是( 。
A.?x∉(-1,+∞),ln(x+1)<xB.?x0∉(-1,+∞),ln(x0+1)<x0
C.?x∈(-1,+∞),ln(x+1)≥xD.?x0∈(-1,+∞),ln(x0+1)≥x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦點(diǎn)為F(-c,0)(c>0),P為雙曲線C右支上的一點(diǎn),線段PF與圓x2+y2+$\frac{2c}{3}$x+$\frac{a^2}{9}$=0相切于點(diǎn)Q,且$\overrightarrow{PF}$+3$\overrightarrow{FQ}$=$\overrightarrow 0$,則雙曲線C的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若一個正三棱柱(底面為正三角形,側(cè)面為矩形的棱柱)的三視圖如圖所示,則這個正三棱柱的側(cè)棱長和底面邊長分別為2,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)平面向量$\overrightarrow a=\overrightarrow{OA}$,定義以x軸非負(fù)半軸為始邊,逆時針方向?yàn)檎较,OA為終邊的角稱為向量$\overrightarrow a$的幅角.若r1是向量$\overrightarrow a$的模,r2是向量$\overrightarrow b$的模,$\overrightarrow a$的幅角是θ1,$\overrightarrow b$的幅角是θ2,定義$\overrightarrow a?\overrightarrow b$的結(jié)果仍是向量,它的模為r1r2,它的幅角為θ12.給出$\overrightarrow a=({x_1},{y_1}),\overrightarrow b=({x_2},{y_2})$.試用$\overrightarrow a$、$\overrightarrow b$的坐標(biāo)表示$\overrightarrow a?\overrightarrow b$的坐標(biāo),結(jié)果為$\overrightarrow a?\overrightarrow b=({x_1}{x_2}-{y_1}{y_2},{x_1}{y_2}+{x_2}{y_1})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-2y+4≥0}\\{x+y-2≤0}\\{y≥0}\\{\;}\end{array}\right.$,若目標(biāo)函數(shù)z=ax-y僅在點(diǎn)(0,2)處取得最小值,則a的取值范圍是( 。
A.(-$\frac{1}{2}$,1)B.(-∞,-1)∪($\frac{1}{2}$,+∞)C.(-1,$\frac{1}{2}$)D.(-∞,-$\frac{1}{2}$)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.一個幾何體的三視圖及其相關(guān)數(shù)據(jù)如圖所示,求這個幾何體的表面積. 

查看答案和解析>>

同步練習(xí)冊答案