15.直線3x+4y+10=0和圓$\left\{{\begin{array}{l}{x=2+5cosθ}\\{y=1+5sinθ}\end{array}}\right.$的位置關(guān)系是( 。
A.相切B.相離C.相交但不過圓心D.相交且過圓心

分析 求出圓的普通方程,得出圓心和半徑,計(jì)算圓心到直線的距離,比較距離與半徑的關(guān)系得出結(jié)論.

解答 解:圓的普通方程為(x-2)2+(y-1)2=25,
∴圓的圓心為(2,1),半徑r=5.
圓心到直線的距離d=$\frac{6+4+10}{\sqrt{9+16}}$=4.
∵0<d<r,
∴直線與圓相交但不過圓心.
故選:C.

點(diǎn)評(píng) 本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,直線與圓的位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a,b,c∈R+,求證:
(1)a5≥a4+a-1;
(2)$\frac{2{a}^{2}}{b+c}$+$\frac{2^{2}}{c+a}$+$\frac{2{c}^{2}}{a+b}$≥a+b+c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列函數(shù)是奇函數(shù),且在定義域內(nèi)是增函數(shù)的是( 。
A.y=x3B.y=2xC.y=sinxD.y=tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知拋物線y2=2px(p>0)上一點(diǎn)A(4,y0)到其焦點(diǎn)$F({\frac{p}{2},0})$的距離為6,則p=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.正方形ABCD的邊長(zhǎng)為1,點(diǎn)E在邊AB上,點(diǎn)F在邊BC上,AE=BF=$\frac{3}{7}$,動(dòng)點(diǎn)P從E出發(fā)沿直線向F運(yùn)動(dòng),每當(dāng)碰到正方形的邊時(shí)反彈,反彈時(shí)反射角等于入射角.當(dāng)點(diǎn)P第一次碰到E時(shí),P與正方形的邊碰撞的次數(shù)為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某初級(jí)中學(xué)有學(xué)生270人,其中一年級(jí)108人,二、三年級(jí)各81人,現(xiàn)要利用抽樣方法抽取10人參加某項(xiàng)調(diào)查,考慮選用簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣三種方案.使用簡(jiǎn)單隨機(jī)抽樣和分層抽樣時(shí),將學(xué)生按一、二、三年級(jí)依次統(tǒng)一編號(hào)為1,2,…,270;使用系統(tǒng)抽樣時(shí),將學(xué)生統(tǒng)一隨機(jī)編號(hào)為1,2,…,270,并將整個(gè)編號(hào)依次分為10段.如果抽得號(hào)碼有下列四種情況:
①7,34,61,88,115,142,169,196,223,250; 
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270.
關(guān)于上述樣本的下列結(jié)論中,正確的是( 。
A.②③都不能為系統(tǒng)抽樣B.②④都不能為分層抽樣
C.①④都可能為系統(tǒng)抽樣D.①③都可能為分層抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.解不等式:
(1)$x-\frac{4}{x-1}<1$;
 (2)|x-1|+|x+2|>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知α是第二象限的角,其終邊上一點(diǎn)為P(a,$\sqrt{5}$),且cosα=$\frac{\sqrt{2}}{4}$a,則sinα的值等于( 。
A.$\frac{\sqrt{10}}{4}$B.$\frac{\sqrt{6}}{4}$C.$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓的兩焦點(diǎn)為F1(0,-1)、F2(0,1),直線y=4是橢圓的一條準(zhǔn)線.求橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案