已知橢圓的離心率為,并且直線是拋物線的一條切線。
(1)求橢圓的方程
(2)過(guò)點(diǎn)的動(dòng)直線交橢圓、兩點(diǎn),試問(wèn):在直角坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn)?若存在求出的坐標(biāo);若不存在,說(shuō)明理由。
(1)所求橢圓方程為
(2)在直角坐標(biāo)平面上存在一個(gè)定點(diǎn)T(0,1)滿足條件    
本題考查了橢圓,拋物線與直線的綜合運(yùn)用,另外,還結(jié)合了向量知識(shí),綜合性強(qiáng),須認(rèn)真分析
I)先跟據(jù)直線y=x+b是拋物線C2:y2=4x的一條切線,求出b的值,再由橢圓離心率為 ,求出a的值,則橢圓方程可得.
(Ⅱ)先假設(shè)存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過(guò)定點(diǎn),再用垂直時(shí),向量 ,的數(shù)量積為0,得到關(guān)于直線斜率k的方程,求k,若能求出,則存在,若求不出,則不存在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)(理科)已知橢圓,過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),交直線于點(diǎn),且,,
求證:為定值,并計(jì)算出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

點(diǎn),點(diǎn),動(dòng)點(diǎn)滿足,則點(diǎn)的軌跡方程是  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)橢圓的左、右焦點(diǎn)分別為、,直線經(jīng)過(guò)點(diǎn)與橢圓交于兩點(diǎn)。
(1)求的周長(zhǎng);
(2)若的傾斜角為,求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F是橢圓(a>b>0)的左焦點(diǎn), P是橢圓上的一點(diǎn), PF⊥x軸, O
∥AB(O為原點(diǎn)), 則該橢圓的離心率是 (        )
 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知P、Q是橢圓3x2+5y2=1上滿足∠POQ=900的兩個(gè)動(dòng)點(diǎn),則|OP|2+|OQ|2=( 。
A.8B.C.D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓C的長(zhǎng)軸長(zhǎng)為2,兩準(zhǔn)線間的距離為16,則橢圓的離心率e為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
設(shè)橢圓的離心率為=,點(diǎn)是橢圓上的一點(diǎn),且點(diǎn)到橢圓兩焦點(diǎn)的距離之和為4.
(1)求橢圓的方程;
(2)橢圓上一動(dòng)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的4倍,縱坐標(biāo)伸長(zhǎng)為原來(lái)的3倍的伸壓變換,則圓的作用下的新曲線的方程是       

查看答案和解析>>

同步練習(xí)冊(cè)答案