18.已知在等差數(shù)列{an}中,a1=-1,a3=3.
(1)求an;
(2)令bn=2an,判斷數(shù)列{bn}是等差數(shù)列還是等比數(shù)列,并說明理由.

分析 (1)利用等差數(shù)列的通項(xiàng)公式即可得出;
(2)利用等比數(shù)列的通項(xiàng)公式及其定義即可判斷出結(jié)論.

解答 解:(1)設(shè)數(shù)列{an}的公差是d,則$d=\frac{{{a_3}-{a_1}}}{3-1}=2$,
故an=-1+2(n-1)=2n-3.
(2)由(1)可得${b_n}={2^{a_n}}={2^{2n-3}}$,
∴$\frac{{{b_{n+1}}}}{b_n}=\frac{{{2^{2({n+1})-3}}}}{{{2^{2n-3}}}}={2^2}=4$是一常數(shù),
故數(shù)列{bn}是等比數(shù)列.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的定義及其通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,AB=BC=3,AC=4,若$\overrightarrow{AC}$+2$\overrightarrow{DC}$=3$\overrightarrow{BC}$,則$\overrightarrow{CD}$$•\overrightarrow{CA}$等于(  )
A.-2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)滿足:①f(x)=2f(x+2),x∈R;②f(x)=lnx+ax,x∈(0,2);③f(x)在(-4,-2)內(nèi)能取得最大值-4.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)設(shè)函數(shù)g(x)=$\frac{1}{3}$bx3-bx,若對(duì)任意的x1∈(1,2)總存在x2∈(1,2)使得f(x1)=g(x2),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知a,b,c均大于1,且logac•logbc=4,則下列各式中,一定正確的是( 。
A.ac≥bB.ab≥cC.bc≥aD.ab≤c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a<0,解關(guān)于x的不等式ax2+(1-a)x-1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)x∈R,f(x)=($\frac{1}{3}$)|x|,若不等式f(x)-k≤-f(2x)對(duì)于任意的x∈R都恒成立,則實(shí)數(shù)k的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.x≥0,y>0,x+y≤2,則$\frac{4}{x+2y}$+$\frac{1}{2x+y}$最小值$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow{a}$=(x,3),$\overrightarrow$=(2,x-5),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=(  )
A.-2B.-3C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.?dāng)?shù)列$\frac{1}{2}$,$\frac{1}{2^2}$,$\frac{1}{2^2}$,$\frac{1}{2^3}$,$\frac{1}{2^3}$,$\frac{1}{2^3}$,$\frac{1}{2^4}$,$\frac{1}{2^4}$,$\frac{1}{2^4}$,$\frac{1}{2^4}$,$\frac{1}{2^5}$,…,則該數(shù)列的第28項(xiàng)為$\frac{1}{128}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案