A. | ac≥b | B. | ab≥c | C. | bc≥a | D. | ab≤c |
分析 由對數(shù)函數(shù)的性質(zhì)和基本不等式化簡已知的方程,再利用對數(shù)的運算進行化簡,即可選出正確的答案.
解答 解:∵a、b、c均大于1,logac•logbc=4,
∴l(xiāng)ogca•logcb=$\frac{1}{4}$,
∴l(xiāng)ogca、logcb大于零,
則logca•logcb≤$\frac{1}{4}$(logca+logcb)2,
即$\frac{1}{4}$≤$\frac{1}{4}$(logca+logcb)2,
∴(logca+logcb)2≥1,
∴(logcab)2≥1,
∴l(xiāng)ogcab≥1或logcab≤-1,當且僅當logca=logcb,即a=b時取等號,
∵a、b、c均大于1,
∴l(xiāng)ogcab>1,
解得ab≥c,
故選:B
點評 本題考查了對數(shù)函數(shù)的性質(zhì),對數(shù)的運算,以及基本不等式的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=$\sqrt{(x-1)^{2}}$,g(x)=x-1 | B. | f(x)=$\sqrt{{x}^{2}-1}$,g(x)=$\sqrt{x+1}$$•\sqrt{x-1}$ | ||
C. | f(x)=($\sqrt{x-1}$)2,g(x)=$\sqrt{(x-1)^{2}}$ | D. | f(x)=x,g(x)=$\root{3}{{x}^{3}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2,-3i | B. | 2,3 | C. | -3,2 | D. | 2,-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{{{({-1})}^n}}}{n}$ | B. | $\frac{{{{({-1})}^n}}}{n+1}$ | C. | $\frac{{{{({-1})}^{n+1}}}}{n+1}$ | D. | $\frac{{{{({-1})}^{n+1}}}}{n}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com